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Preface 

Before You Begin... 

Before you start into this report, it may help you to relax and prepare to be patient. 

Be Patient With the Material... 

Chaos as a branch of mathematics is still extremely young. The first concrete 

results surfaced only 30 years ago. Enormous opportunities for new research remain 

unexplored. As of yet, not all the bodies of interested researchers know one another or 

exchange (or search for) information across disciplinary lines. This paper represents my 

effort to continue the published conversation on Chaos applications. I'm inviting you to 

eavesdrop because the issues are crucial to our profession. 

Be Patient With the Essay... 

Several officers got wind of my background in math, and as I left for the Naval 

War College, they asked me to consider how Chaos Theory influences the military 

profession. I saw the resources that were in use and I felt compelled to correct some 

serious errors.  Many current publications overlook key results, they make fundamental 
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technical mistakes, or they scare the reader with the complexity of the issues. While the 

process documented in these papers is noteworthy—many sincere efforts were made 

under severe time constraints—we're overdue for a midcourse correction to prevent the 

errors from propagating any further. 

My own Chaos research began in 1987 in my Ph.D. studies at Georgia Tech, 

where Professor Raj Roy introduced me to Chaos in lasers. Since then, I taught math for 

four years at the Air Force Academy, including three special topics courses on Fractals 

and Chaos. This past year, I made formal presentations to the ACSC student body and to 

two small seminars of Naval War College faculty. This paper grew out of those talks, 

subsequent questions, and my continuing research. 

I've aimed this report at the broad population of students attending the various 

war colleges. I made the format conversational so I can talk with you, not at you, since 

this essay takes the place of what I might discuss in a more personal, seminar 

environment. I struggled to strike a useful balance, discussing more examples in some 

places, so I can reach this broad audience, cutting shorter in other places, to use your time 

more efficiently. I'm assuming a minimal technical background, appealing to an 

appendix only where absolutely necessary. I've also assembled a substantial 

bibliography of what I consider to be the best available references for the reader who's 

anxious for more. 

IV 



Be Patient With Yourself... 

Finally, relax. Chaos isn't hard to learn—it's hard to learn quickly. The 

important results are often abstract generalizations, but we can arrive at those conclusions 

via examples and demos that are not difficult to visualize. Allow yourself to wonder. 

In his splendid text, Fractals Everywhere, Michael Barnsley warns: 

There is a danger in reading further. You risk the loss of your childhood 
vision of clouds, forests, galaxies, leaves, feathers,. .. and much else besides. 
Never again will your interpretation of these things be quite the same. 

I will warn you further of the risks of not reading further: you may fail to understand 

phenomena that are essential to decision makers, particularly in an era where the light- 

speed and high volume of feedback drive the dynamics of our physical and social systems 

into Chaos. 
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Executive Summary 

This report distills those issues of Chaos Theory essential to military decision 

makers. The new science of Chaos examines behavior that is characterized by erratic 

fluctuations, sensitivity to disturbances, and long-term unpredictability. This paper 

presents specific ways we can recognize and cope with this kind of behavior, in a wide 

range of military affairs. 

Designed for courses at the various war colleges, the report makes three new 

contributions to the study of Chaos. First, it reviews the fundamentals of chaotic 

dynamics; the reader needs no extensive math prerequisites. Much more than a 

definition-based tutorial, the first part of the report builds the reader's intuition for Chaos 

and presents the essential consequences of the theoretical results. Second, the report 

surveys current military technologies that are prone to chaotic dynamics. Third, the 

universal properties of chaotic systems point to practical suggestions for applying Chaos 

results to strategic thinking and decision making. The power of Chaos comes from this 

universality: not just the vast number of chaotic systems, but the common types of 

behaviors and transitions that appear in completely unrelated systems. In particular, the 

results of Chaos Theory provide new information, new courses of action, and new 

expectations in the behavior of countless military systems. The practical applications of 

Chaos in military technology and strategic thought are so extensive that every military 

decision maker needs to be familiar with Chaos Theory's key results and insights. 
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Introduction 

Welcome and Wonder 

Physicists, mathematicians, biologists, and astronomers 
have created an alternative set of ideas. 
Simple systems give rise to complex behavior. 
Complex systems give rise to simple behavior. 
And most important, the laws of complexity hold 
universally, caring not at all for the details of a system's 
constituent atoms. 

- James Gleick 

Wake Up and Smell the Chaos 

Your contractor for the operational tests of your new missile system just handed 

you the chart in Figure 1. He ran two tests, identical to six decimal places, but the system 

performance changed dramatically after a few time steps. He thinks there was a glitch in 

the missile's telemetry, or somebody made a scaling error when they synthesized the 

data. Could it be that the data is correct and your contractor is overlooking something 

critical to your system? 
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Figure 1. Hypothetical Missile Test Data: What Went Wrong? 

Your wargaming staff is trying to understand and model the time dependence of 

American aircraft losses in Vietnam. They look at the data in Figure 2 and quit. It's just 

a random scatter of information, right? No patterns, no structure, too many variables, too 

many interactions between participants, too large a role played by chance and human 

choice. No hope, right? 

Aircraft 
losses 

Figure 2. U.S. Aircraft Losses in Vietnam. 



The results of the new science of Chaos Theory offer some intriguing answers to 

questions like these. Moreover, the theory has profound implications for the dynamics of 

an enormous array of military affairs. In fact, the applications of Chaos in military 

technology and strategic thought are so extensive that every military decision maker 

needs to be familiar with Chaos Theory's key results and insights. 

Why Chaos with a Capital "C"? 

Chaos, as discussed here, is not social disorder, anarchy, or general confusion. 

Before you read on, set aside your connotations of the societal (small "c") chaos reported 

on the evening news. Chaos is a relatively new discipline of mathematics with boundless 

applications; to highlight the difference, I'll keep Chaos capitalized throughout the essay. 

Chaos Theory describes a specific range of irregular behaviors in systems that move or 

change. What is a system? To define a system, we only need two things: a collection of 

elements—components, players or variables—along with a set of rules for how those 

elements change—formulas, equations, recipes, or instructions. 

The term Chaos was first coined less than 30 years ago—that's a hot topic for 

math! James Yorke characterized as chaotic the apparently unpredictable behavior 

displayed by fluid flow in rivers, oceans and clouds.4 Now, artificial systems can move 

and react fast enough to generate similar, erratic behavior, dynamics that were not 

possible before the advent of recent technologies. Many military systems exhibit Chaos, 

so we need to know how to recognize and manage these dynamics.   Moreover, the 



universality of many features of Chaos gives us opportunities to exploit these unique 

behaviors. Learn what to expect. This is not a fleeting fad: real systems really behave 

this way. 

What's New in This Essay? 

There are plenty of Chaos tutorials already, in various disciplines, but there are 

three main deficiencies in the available resources: 

1. Many tutorials require an extensive background in math analysis. 

2. Many works do not focus on useful CONSEQUENCES of Chaos Theory.  They 
simply offer a smorgasbord of vocabulary. 

3. Many contain major technical flaws that dilute their potential application or 
mislead the reader. 

So, the immediate need is two-fold: we need a bridge to connect us with the basics of 

Chaos Theory, and we need in-depth demonstrations of its applications. This essay 

strives to serve both these needs. 

Who Cares? 

Even if Chaos can help military analysts, why should everyone be exposed to the 

theory?  After all, there's a balance here: you don't need to know quantum physics to 



operate a laser printer, right? However, you're about to see that Chaos occurs in virtually 

every aspect of military affairs. The 1991 DOD Critical Technologies Plan, for instance, 

sets priorities for research spending, prioritizing the following technologies based on their 

potential to reinforce the superiority of US military weapon systems: 

1. semiconductor materials & microelectronics circuits 
2. software engineering 
3. high performance computing 
4. machine intelligence and robotics 
5. simulation and modeling 
6. photonics 
7. sensitive radar 
8. passive sensors 
9. signal and image processing 
10. signature control 
11. weapon system environment 
12. data fusion 
13. computational fluid dynamics 
14. air breathing propulsion 
15. pulsed power 
16. hypervelocity projectiles and propulsion 
17. high energy density materials 
18. composite materials 
19. superconductivity 
20. biotechnology 
21. flexible manufacturing 

Every one of these technologies overlaps with fundamental results from Chaos Theory! 

In particular, the chaotic dynamics possible in many of these systems arise due to the 

presence of feedback in the systems; other sources of Chaos are discussed elsewhere in 

this report. As you continue reading, you'll see that the fundamentals of Chaos are as 

important to military systems as Newton's laws of motion are to classical mechanics. 



Numerous systems tend to behave chaotically, and if you don't understand Chaos, 

you won't understand a great deal of the changes happening around you. Look again at 

Figure 2. Not too long ago, if we had measured output like Figure 2, in any scenario, we 

would have packed up and gone home. However, it's not "noise" at all. Chaos Theory 

helps us know when erratic output, like that in the figure, may actually be generated by 

deterministic (non-random) processes. In addition, the theory provides an astounding 

array of tools which: 

• make short-term predictions of the next few terms in a sequence; 

• predict long-term trends in data; 

• estimate how many variables drive the dynamics of a system; 

• control dynamics that are otherwise erratic and unpredictable! 

Moreover, this  analysis  is  often possible without  any  prior  knowledge  of an 

underlying model or set of equations. 

Applied Chaos Theory already has a growing community of its own, and the 

majority of military decision makers are not yet part of this group. For example, the 

Office of Naval Research (ONR) leads DOD research into Chaos applications in 

engineering design, but more military leaders need to be involved and aware of this 

progress. Beyond the countless technical applications, many of which readily translate to 

commercial activities, we must concern ourselves with strategic questions and technical 



applications that are unique to the warfighting profession.   Chaos Theory brings to the 

table practical tools that address many of these issues. 

Why Now? 

As long as there has been weather, there have been chaotic dynamics—we're only 

recognizing it now for the first time. Previous scientists, like Poincare in the late 1800s, 

had some inklings of the existence of Chaos, but the theory and the necessary 

computational tools have only recently matured enough to study chaotic dynamics. 

Edward Lorenz, in 1963, made his first observations of Chaos quite by accident, when he 

attempted simulations which were only possible with the advent of "large" computers. 

Currently, high-speed communication, electronics and transportation bring new conduits 

for feedback, driving more systems into Chaos. Consider, for instance, the weeks 

required to cross the Atlantic to bring news of the American Revolution to Britain. Now, 

CNN brings live combat updates from Baghdad. 

Until now, observations of the irregular dynamics that often arise in rapidly 

fluctuating systems have been thrown away. Unless we train decision makers to look for 

specific dynamics and symptoms of the imminent onset of drastic transitions in behavior, 

erratic data sets will continue to be discarded or explained away. 



Clear Objectives 

As I suggested in the Preface, Chaos Theory is not difficult to learn—it's difficult 

to learn quickly. Am I violating this premise by trying to condense the essentials of 

Chaos into this single report? I hope not. I'm trying to build a bridge and sketch a coarse 

map. The bridge spans the gap that separates physical scientists on one side—including 

analysts in math, physics, and electrical engineering—and humanists on the other- 

experts in psychology, history, sociology and military science. My bibliographical map 

points the way to more specific references, on issues that interest smaller segments of the 

broad audience I hope to reach with this essay. 

My intent here is to teach you just enough to be dangerous, to convince you that 

Chaos happens all around you. The results of Chaos Theory can improve your decision 

making and add new perspectives to your creative thought. I will also show you enough 

examples and applications that you won't be able to help yourself: you'll start to notice 

chaotic dynamics wherever you are. Eventually, I hope you'll grasp the key results and 

use them to your advantage in your particular discipline. Finally, I aim to infect you, 

irreversibly: with a new perspective on motion and change, with an insatiable curiosity 

about Chaos, and with adequate tools and references to continue the deeper study which 

is essential to fully understanding the fundamentals of Chaos. 

Here's the plan. In Chapter One, we start with Chaos you can demonstrate at 

home, so the skeptics will believe Chaos is more than a metaphor, and so we can all 

visualize and discuss important issues from a common set of experiences.  I don't want 



you to mistakenly believe you need access to high technology circuits and lasers to 

concern yourself with Chaos—quite the contrary. Then we'll add some detail in Chapter 

Two, complementing our intuition with better definitions. In Chapter Three, we take a 

look at the pervasiveness of Chaos in military systems. Next, Chapter Four serves up 

practical means for applying Chaos Theory to military operations and strategic thinking. 

Most of the discussions proceed from specific to general in order to lend a broad 

perspective of how Chaos gives new information, new options for action, and new 

expectations of the dynamics possible in military systems. 

In the end, I hope you will learn to: 

• RECOGNIZE CHAOS when you encounter it; 

• EXPECT CHAOS in your field, your organization, and your experiments; 

• EXPLOIT CHAOS in your decision making and creative thought. 



PART 

What IS Chaos? 

Somehow the wondrous promise of the earth 
is that there are things beautiful in it, 
things wondrous and alluring, 
and by virtue of your trade 
you want to understand them. 

Mitchell J. Feigenbaum 
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ONE 

Demonstrations 

The disorderly behavior of simple systems—generated complexity: 
richly organized patterns, 
sometimes stable and sometimes unstable, 
sometimes finite and sometimes infinite, 
but always with the fascination of living things. 

That was why scientists played with toys. 

- James Gleick 

DEFINITELY Try This at Home!!! 

The simple demonstrations in this chapter offer visualizations of a wide range of 

chaotic dynamics. You will also get a good introduction to the methods and tools 

available to observe, measure and analyze these dynamics. My main goal is to build your 

intuition for what Chaos looks like. 

For any skeptical readers, these examples represent the first exhibits of the 

extensive evidence I will produce to demonstrate how prevalent chaotic dynamics are. 

For all readers, this chapter outlines common examples which provide a useful 
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context—in subsequent chapters (and in your own deliberations)—for discussing 

definitions, tools, and key results, and applications. I chose to begin with demonstrations 

you set up at home, so you don't get the impression you need access to high technology 

to observe Chaos. Quite the contrary, I hope you will be astounded at how Chaos arises 

in the simplest physical systems. You may also find that even this brief exposure to 

chaotic dynamics will spark your own imagination about the systems where Chaos may 

arise in your own areas of interest. A little later, after a more complete description of the 

vocabulary and tools of Chaos (Chapter Two), we will review the military systems where 

you should expect to see Chaos (Chapter Three). 

Remember: as you work through each example, you will gradually come to expect 

and recognize Chaos in any system that changes or moves. As a general plan for each 

demo that follows, I will: 

1. Describe the physical system and clearly answer: 

What is my system? 

What am I measuring? 

2. Preview the significance of the particular system: 

Why do we care about this demo? 

What does it let us see? 

Does it relate to any military systems? 

3. Discuss the significant dynamics and transitions. 

4. Highlight those results and characteristics common to many chaotic systems. 
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The answers in Item 1 are crucial. The contusion in many discussions about 

Chaos can be traced to failures to identify either a well-defined system or a set of 

measurements. Likewise, to understand the appropriate ways to apply the insights of 

Chaos, we need to use its terminology with some care. With this priority in mind, the 

discussion of each demo will give you a first peek at the Chaos vocabulary which Chapter 

Two presents in greater detail. 

Yo-Yo —Warm Ups with a Single Pendulum 

Before we exercise our imaginations with chaotic dynamics that may be entirely 

new, let's first "stretch out" by examining the detailed behavior of a yo-yo. The 

simplicity of this example makes it easy to visualize and to reconstruct in your home or 

office; it gives us an indication of good questions to ask when we observe other systems. 
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As a hint of things to come, an extraordinary number of complicated physical 

systems behave just like a pendulum, or like several pendula that are linked together. 

Picture, for instance a mooring buoy whose base is fixed to the sea floor, but whose float 

on the surface is unconstrained. Much of the buoy's motion can be modeled as an 

upside-down pendulum.9 Nevertheless, while we will eventually get a lot of mileage out 

the motion of a single pendulum, just think of this as warm-ups. 

What is the system, exactly? A fixed mass, suspended at the end of a fixed 

length of rigid wire (let's not allow our strings to bend here; don't let your yo-yo roll up 

and down), swings in only two dimensions (left and right swings only, no additional 

motion). The wire is fixed at a single point in space, but let's assume there is no 

"ceiling" so the yo-yo is allowed to swing up over its apex and around to the other side 

(Figure 3). Please notice that, as we define the system, we must clearly state our 

assumptions about its components and its behavior. 

What can we observe and measure in this system? Fortunately, in this 

example, we only need two pieces of information to completely describe the physical 

"state" of the system: position and velocity. The pendulum's position is measured in 

degrees; its velocity is measured in degrees per second. These two observable quantities 

are the only two independent variables in the system, sometimes referred to as the 

degrees of freedom or the phase variables for this system. A system's phase variables 

are those time-dependent quantities that determine its state at a given time. Notice that, 
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even though the yo-yo swings in a curve that sits flat in a two-dimensional plane, we only 

need one variable to describe the yo-yo's position in space. Therefore, the yo-yo has only 

one degree of freedom in its angular position. 

So, what can this yo-yo do? Let's pretend, at first, that the yo-yo experiences no 

friction, drag, or resistance of any kind. This ideal pendulum exhibits a rich variety of 

behavior. If we start it at "the bottom," where both position and velocity are zero, it stays 

there. Any state that has this property—not changing or moving when undisturbed—is 

called an equilibrium, steady state, or fixed point for the system. If we displace the yo- 

yo a few degrees to either side, and just let it go, it swings back and forth periodically, 

with the same undying amplitude, forever. In this ideal system, we can also carefully 

balance the pendulum at the top of its swing, and it will stay put forever. This state, with 

position 180 degrees and velocity zero, is another equilibrium point. 

Does this ideal pendulum display any other dynamics? Perhaps just one more: we 

can impart enough initial velocity to the pendulum so it swings upwards over its apex 

and continues to wrap around its axle forever. This completes the list of possible 

dynamics for the ideal pendulum, and it completes your first exposure to some important 

terms used to describe all dynamical systems. 

Now let's get back to reality and add some resistance to the system, where the 

yo-yo experiences "damping" due to friction and drag. This real pendulum still has the 

same two equilibrium points: the precise top and bottom of its swing, with zero velocity. 

A new feature we can discuss, though, is the stability of these fixed points. If we disturb 

any pendulum as it hangs at rest, it eventually slows its swing and returns to this low 
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equilibrium. Any such fixed point, where small disturbances "die out," and the system 

always returns to its original state, is called a stable fixed point (Figure 4a). On the other 

hand, at the top position of 180 degrees, any perturbation to the right or left sends the yo- 

yo into a brisk downswing that eventually diminishes until the yo-yo hangs at rest. When 

a system tends to depart from a fixed point with any minuscule disturbance, we call it an 

unstable fixed point (Figure 4b). 

(a)  Ahhh... stability (b)   Unstable... Don't Breathe !! 

Figure 4.   Stable and Unstable Equilibrium Points. 

We should also note a few other issues, concerning the yo-yo's motion, which 

will arise when we study more complicated systems. First is the observation that the 

pendulum (with friction) displays both transient and limit dynamics. The yo-yo's 

transient dynamics are all the swings which eventually damp out due to resistance in the 

environment. After all the transients die out, the system reaches its limit dynamics, 

which in this case is a single state: the lower fixed point with zero position and velocity. 
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It seems we may be reaching the point where we've exhausted the possible 

dynamics in this simple pendulum system. After all, even though this is a harmless way 

to introduce the vocabulary of fixed points, dynamics, transience and stability, there is 

only so much a yo-yo can do. Right? 

When the system remains undisturbed, the answer is a resounding YES! The 

reason: the motion of a simple pendulum, unforced, is a linear system whose solutions 

are all known. In particular, the equation of motion, for the position y, comes from 

Newton's familiar relation, force equals mass times acceleration: 

my"   +  cy'  +  ky  =  0, (1) 

where m is the pendulum mass, c is a measure of friction in the system, and k includes 

measures of gravity and string length. 

Now, the swinging motion we observe appears to be anything but linear: a 

pendulum swings in a curve through space, not a straight line, and the functions that 

describe oscillations like these are wavy sines and cosines. However, the equation of 

motion—like the system itself—is called linear because the equation consists of only 

linear operations: addition, multiplication by constants, and differentiation. When the 

pendulum experiences no external forces, the resulting homogeneous equation shows a 

zero on the right hand side of Equation (1). What's the significance of recognizing a 

linear, homogeneous system? All the solutions are known; all possible behaviors are 

known and predictable. 
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To add the last essential layer of reality, and to generate some interesting motion 

in the pendulum system, envision a playground swing. Once you get yourself started 

swinging, how do you get yourself to swing much higher? You add a relatively small 

external force to the system: you kick your legs, and lean forward and back, in a manner 

carefully timed with the larger motion of the swing itself. By pumping your legs like 

this, you add a periodic force to the right side of Equation (1), and you resonate and 

amplify a natural frequency of the large swing. 

This addition of an external kick, or forcing function, to the pendulum system can 

induce interesting new dynamics. Be aware that, especially if you are pushing someone 

else on the swing, you can control three different features of the perturbation: where you 

push, how hard, and how often. The system may respond to the external forcing in many 

different ways. It may resonate with one of its natural frequencies (you may have seen 

the movie of the Tacoma Narrows bridge, destroyed by the violent oscillations induced 

by resonance with wind gusts). In another instance, the swing may behave quite 

unpredictably if you lose your concentration and push the chains instead of the swing. 

You may momentarily bring the entire system to a halt, cause intermittent lurches in the 

swing, or you may get very regular motion for a long time, only occasionally interrupted 

by off-cycle bumps or jostles. 

The playground swing, as a system, is just like the simple pendulum. However, 

when you "kick" it occasionally you begin to observe departures from predictable 

behavior. This irregular sort of behavior, characteristic of a kicked pendulum, is one of 

the many traits of Chaos: behavior that is not periodic, apparently random, where the 
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system response is still recurrent (the pendulum still swings back and forth) but no 

longer in a predictable way. Because of the rich dynamics possible in such a simple 

physical system, James Gleick correctly asserts that physicists could not truly understand 

turbulence or complexity until they understood pendulums. Chaos Theory unites the 

study of different systems, so the dynamics of swings and springs broaden to bring new 

insights to high technologies from lasers to superconducting Josephson junctions, control 

surfaces in aircraft and ships, chemical reactions, the beating heart, and brainwave 

activity. 

As this essay continues, we will see more detailed connections between the 

behavior of yo-yo's and other more complicated systems. For now, let's move on to our 

second home demonstration of Chaos, introduce some additional vocabulary, and 

continue to build our intuition for what we should expect to see in a chaotic system. 

The Dripping Faucet 

Our second home demo can be done at the kitchen sink, or with any fluid spout 

where you can control the fluid flow and observe individual drips. This demo mimics an 

original experiment by Robert Shaw and Peter Scott, at the University of California Santa 

Cruz.11 This is a wonderful illustration of several features of Chaos, particularly the 

transitions between various dynamics, which are common to many systems. The results 

are so astounding, you may want to bring your reading to the sink right now and 

experiment as you read along. Otherwise, you may not believe what you read. 
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What's the system? To recreate the Santa Cruz experiment, we need a faucet 

handle or spigot that can be set at a slow flow rate and then left alone so we can observe 

drops emerging for a few minutes. We need enough water available so the flow 

continues without interruption (which is only a problem if you're using an iced tea cooler, 

or a mustard squeeze-bottle, as your controllable spout). Finally, you need some means 

to observe the timing between drops. You don't need a stopwatch, exactly, but you do 

need either a clear view of the drops, or you need the drops to land on some surface that 

resounds loudly enough for you to observe patterns and rhythms as the drops fall. 

Fortunately, we need no assumptions about the water quality, or any details about the size 

or material of the spout. We just need drops. 

What can we observe and measure in this system? We want to have a clear 

view of the drops forming; this will give us some intuition for why the flow makes 

transitions between different kinds of behavior. We want to measure the time intervals 

between drops. Shaw and Scott did this very precisely with a laser beam and computer. 

For us, it will suffice to watch or listen as the drops land. 

What's the significance? Because of the difficulties modeling any fluid, there is 

absolutely no hope of simulating even a single drop forming and dropping from a faucet. 

However, by measuring only one simple feature of the flow, the time between events, we 

can still understand many characteristics of the system dynamics.   We'll observe, for 
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example, specific transitions between behaviors, transitions that are common to many 

chaotic systems. We'll also gain some useful metaphors that are consistent with our 

intuitions of human behavior, but much more important, we'll learn some very specific 

things to expect in chaotic systems, even when we can't model their dynamics. 

So, what kind of things can a sequence of water drops do? If the spigot is barely 

open, and the flow extremely slow, you should observe a slow, regular pattern of drips. 

Leave the faucet alone, and the steady, aggravating, periodic rhythm will continue, far 

into the night.   This pattern represents steady state, periodic output for this system. 
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Figure 5. Formation of Water Drops from a Spout. 
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Increase the flow ever so slightly, and the drips are still periodic, but the time interval 

between drips decreases, that is, the frequency increases. At the other extreme of its 

behavior, with the flow rate turned much higher, the water will come out as a steady, 

unbroken stream. No real excitement, yet. 

The big question is: what happens in between these two extreme behaviors? How 

does the flow make its transition from periodic drips to a steady stream? We'll move step 

by step through the transitions in this system. Low flow rates will generate slow, regular 

drips. Increased flow will produce regular drips with new patterns. After a certain point, 

the drop dynamics will prevent the faucet from dripping regularly, and we'll see evidence 

of Chaos. 

Here's how to proceed with the experiment. Start with a slow steady, dripping 

faucet. Watch, for a moment, how the drops form. A single drop sticks to the end of the 

spout and begins to fill with water, like the elastic skin of a balloon (Figure 5). 

Eventually, the drop grows large enough to overcome its surface tension; it breaks off and 

falls. The water left on the spout first springs back and recovers, then it begins to fill up 

to form the next drop. We will see that the time it takes the second drop to recover is a 

critical feature of the system. 

Now, VERY gradually, increase the flow rate. For a while, you'll still see (or 

hear) periodic dripping, while the frequency continues to increase. However, before too 

long—and before the flow forms a solid stream—you will observe a different dripping 

pattern: an irregular pattern of rapid dripping interspersed with larger splats of various 

22 



sizes, all falling at erratic, unpredictable time intervals. What causes the new behavior? 

The drops are beginning to form so quickly that a waiting drop does not have time to 

spring back and completely recover before it fills with water and breaks off. This is 

chaotic flow. 

This deceptively simple demo is essential to our intuition of Chaos, for several 

reasons. First, despite the nasty fluid physics that's impossible to model in detail, we are 

able to make simple measurements of time intervals and learn a great deal about the 

system dynamics. We learn, in this experiment, that we need not dismiss as intractable 

the analysis of a system that seems to be too large or has "too many variables" or "too 

many degrees of freedom." You can surely imagine quite a few military systems with 

these imposing properties, starting with a conventional battlefield. The water drops give 

us hope: by isolating and controlling one key parameter, and making one 

straightforward measurement, we can still come to understand, and perhaps manipulate, a 

very complicated system. 

The second common feature of Chaos illustrated by the dripping faucet is the 

presence of this control parameter—in our case, the flow rate, controlled by your spigot. 

Think of a control parameter as a single knob that allows you to regulate the amount of 

energy in the system. Not only does this energy control provide a means to dictate the 

dynamics of the dripping faucet, but the transitions between various behaviors are 

identical in countless, seemingly unrelated physical systems. In the faucet, for instance, 

low flow generates periodic output; an increase in flow leads to higher-period behavior; 

even higher flow—more energy in the system—allows chaotic dynamics. Moreover, the 
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Chaos appears when the system has insufficient time to relax and recover before the 

next "event" occurs. These same transitions take place in mechanical systems, electrical 

systems, optical systems, and biological systems. Even more incredible, the transitions to 

more complicated behavior can occur at predictable parameter values ("knob" settings), 

a result discussed in the demonstration that follows. The critical conclusion is that our 

knowledge of chaotic systems teaches us: 

1. to expect specific behaviors in a system that displays periodic behavior; 

2. to expect to see higher-periods and Chaos with more energy input; 

3. to forecast, in some cases, parameter values that permit these transitions! 

A third common characteristic of chaotic systems highlighted here is the fact that 

the system dynamics are revealed by observing time intervals between events. The 

physical event—droplet formation and breakoff—is impossible to simulate, so we avoid 

taking difficult measurements like drop diameter, drop mass or velocity. Instead, we note 

the length of time between events, and, if we can measure this time accurately, we are 

able to construct a return map, or first-return map that clearly indicates the various 

patterns of behavior (Figure 6). 
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Figure 6. First-Return Maps for the Dripping Faucet. 

On the x-axis, a return map plots the time difference between, say, drops 1 and 2, 

versus the y-axis time difference between drops 2 and 3. When the flow is slow and 

periodic, the time intervals are regular, so the time between the first drops is equal to the 

time between the next pair of drops. On the plot, that means we're plotting x-values and 

y-values that are always equal, so we see a single dot on the plot (Figure 6a). So, if we 

ever observe a return map where all the data fall on a single point, we can conclude our 

system is behaving periodically. 

If we consider our time-difference measurement a record of the state of our 

system, then any limit behavior summarized on the return map represents an attractor 

for the system. An attractor is a collection of states that a system "settles" into after its 
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transient dynamics die out.  For the periodic flow, the attractor is a single point on the 

return map. 

The next transition in drop dynamics was reported by Shaw and Scott but is fairly 

difficult to perceive in our home experiment. At a specific range of flow rates, before the 

onset of Chaos, they observed a rapid string of drips that fell off in close pairs. The flow 

showed a different periodicity with one short time step followed by a longer time step: 

drip-drip drip-drip drip-drip      They confirmed the existence of this change in 

periodicity by using a simple model of their system, but its presence was clear on the 

return map (Figure 6b).12 In this case, we say the sequence of drops has period-2, we say 

the system has undergone a period doubling, and the attractor is the set of two points on 

the plot. For the record, this system (like many others) experiences additional period 

doublings to period-4, period-8, etc., before the onset of Chaos. These transitions, 

however, can be difficult to detect without sensitive lab equipment. 

Finally, chaotic flow generates time intervals with no periodicity and no apparent 

pattern. However, the chaotic return map does not simply fill all the available space with 

a random smear of points (Figure 6c). There is some rough boundary confining the 

chaotic points, even though they appear to fill the region in an erratic, unpredictable way. 

What is most astonishing is that this smear of points is amazingly reproducible. That is, 

we could run the experiment anywhere, with virtually any water source, and a very 

similar pattern of points would appear on the return map for chaotic flow. The structure 

of the collection of points is due to the dynamics driving water drops in general, not due 

to the specific experimental machinery. 
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The water drop experiment offers additional hope for how we might control a 

chaotic system. (This is easiest to demonstrate if you use a portable water spout, like an 

empty mustard bottle, but may work well if your kitchen spout is sufficiently flexible.) 

Set the spout so you have flow that remains chaotic. Then try the following: jiggle the 

spout in some regular, periodic way. You might bounce your mustard bottle up and 

down, or simply tap the end of your kitchen faucet with a regular beat. You should be 

able to find the right strength and frequency to perturb your system and get it to change 

from Chaos back to periodic drips, a periodicity that will match the beat of your tapping. 

This is not very different from kicking your legs on the swing. However, in this case, we 

are starting with a chaotic system where we can apply a relatively small disturbance to 

force the system to return to more stable periodic behavior. 

Later, the essay will discuss more details concerning Chaos control that has been 

successfully demonstrated in both theory and practice. We will also consider issues of 

when we might prefer Chaos to be present or not present in a given system. At this point, 

it is interesting to notice, too, that the perturbation of the dripping faucet can drive a 

chaotic system into stable (periodic) behavior, while our previous perturbation of the park 

swing forced it to go from stable periodicity into Chaos! 

At this point, we've introduced two chaotic systems whose dynamics will lend 

some insight to the behavior of more complicated military systems. The first was 

mechanical, the second, fluid. Our next demo involves some simple (inexpensive!) 

electro-optics you can pick up at any hardware store. 
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Nightlight 

I stumbled onto this demonstration quite accidentally, just a few weeks ago. I 

went to plug in a small nightlight in our bathroom—one of those automatic lights, about 

the size of your palm, that turns on automatically when the room is dark. I plugged it into 

the socket; the room was dark. I noticed that, just before I pulled my hand away from the 

nightlight, it flickered rapidly. I put my hand near the light again and I saw the same 

flicker. What interesting dynamics are hiding in this system? 

What's the system? To reconstruct this system we need a light source of any 

kind that includes an automatic sensor that cuts off the electric current when it senses 

light (Figure 7). We also need a dark room (as opposed to a darkroom) and a mirror, 

small enough so we can move it around near the light, and supported in a stand so we can 

let it go, in order to observe the light. Now, set the mirror so it reflects light from the 

bulb back onto the sensor. By adjusting the mirror's distance from the sensor, we can 

vary the delay of feedback in the system. 
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What are we observing and measuring? When the mirror is close enough to 

the nightlight, about four to twelve inches, you should see it flicker. What's going on? 

Quite simply, the sensor is doing its best to fulfill its mission under unusual 

circumstances. Initially, the room is dark, so the sensor turns its light on. You've put 

your mirror in place, though, so as soon as the light turns on, the sensor picks up the 

reflected light and correctly decides to shut off. Oh dear, the room is dark again: time to 

turn on, and so on. The sensor detects and responds very quickly, so we see the 

nightlight flicker vigorously. 

What exactly should you observe in this system? Like the dripping faucet, the 

output to measure here is the frequency of the flickering, the time difference between 

events. We would probably learn even more by also monitoring the light's intensity, but 

this requires fancier equipment than most of us keep around the house. 

What transitions should we expect? To see the range of dynamics possible in this 

system, start with the mirror far from the sensor, about a yard or so away. Slowly draw 

the mirror closer to the sensor. The first change you'll see is a noticeable dimming in the 

light. Honestly, I don't know yet whether this is a simple change in the light's output or a 

fluctuation whose frequency exceeds our visual resolution. Do your best to locate the 

farthest point from the light where the dimming begins. Let's label this distance, d0. 

You may find that d„ is up to a foot or two away from the light. 

As you move the mirror even closer, the next change you'll probably see is the 

first sign of flickering. Once again, try to mark d,, the farthest place where the flicker is 

noticeable. As you continue to move the mirror toward the sensor, you will see various 
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ranges of distances where the flickering displays other periodicities, and you ought to see 

at least one region where the reflected feedback drives the system into Chaos: irregular 

bursts of brightness and flickering. Mark the distances, as well as you're able, where you 

see transitions: d2, d3, etc. If you don't observe any Chaos, how might you alter your 

system? There are several accessible control variables: try a different (cleaner?) mirror; 

change your reflection angle (are you hitting the sensor efficiently?); use a brighter light 

bulb. 

What's the significance? The dynamics exhibited by the nightlight system 

highlight several critical insights that will help us apply the general results of Chaos 

Theory to other systems. The first new insight comes from the dynamics we can generate 

by imposing feedback on a system. Of course, the use of feedback itself is not new, but 

the output we observe in the nightlight provides a new understanding of the dynamics 

that control theorists have been wrestling for decades. 

The nightlight demo also offers practical new approaches to study and control a 

system whose output sometimes fluctuates. In particular, once I observed periodic 

behavior in the system (accidental though it was) I knew to expect several ranges of 

periodicity and Chaos if I varied one of the control parameters available to me. My 

experience with Chaos gave me very specific behaviors to expect, in addition to obvious 

suggestions of ways to control the dynamics. Moreover, I had some idea of the kinds of 

dynamics to expect without knowing anything about the internal workings of the 

system! 
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Figure 8. Finding the Feigenbaum Constant in the Nightlight Experiment. 

This universality of chaotic dynamics underscores the power of understanding the 

basic results of Chaos Theory. Certainly, not every system in the world is capable of 

generating Chaos, but in many systems we can control and analyze a system with no need 

for a model. Here are two simple examples of the kind of analysis that's possible even 

without a model. For this analysis we only need the list of distances (d„, d„ etc.) where 

we noted transitions in system behavior.   First of all, we know that the signal in our 

Q 

demo, the light from the bulb, is traveling at a known constant, c = 3.0 x 10 meters/sec. 

Therefore, we can quickly assemble a list of important time constants for this system by 

dividing each of our distances by the speed of light, c. These time constants directly 

affect important transitions in the light's output; we know we can alter the system's 

behavior by applying disturbances that are faster or slower than these key time delays. 

Other time constants we might consider include the frequency of the electric current, and 

the frequency (color) of the light. 
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A second numerical result gives us some hope of predicting the parameter 

values where transitions in dynamics should occur. Dr Mitchell Feigenbaum, of Los 

Alamos National Laboratory, New Mexico, discovered that many chaotic systems 

undergo transitions at predictable ranges of their parameter settings. In particular, he 

compared the ratio of differences between key parameter values, which for us translates 

into calculating a simple ratio: 

(d0- d^/Cdi   -  d2)   . (2) 

He discovered that this ratio is a universal constant, approximately 4.67—now known as 

the Feigenbaum number—which appears in chaotic systems where Chaos arrives via 

period doubling, systems like our dripping faucet. This amazing result tells us when to 

anticipate changes in dynamics. For instance, if our first transition happens when the 

mirror is 12 inches out, and the second transition occurs at 8 inches, we note the 

difference in these parameter values, 4 inches (Figure 8). Feigenbaum tells us that we 

ought to expect another transition (dj - d2) in another 4 / 4.67 inches, or 0.85 inches from 

the point of the last transition. Now, in any system where we try to make predictions this 

way, we may face other complications. Our moving mirror, for example, may actually 

change several control parameters at once, such as brightness and focus. However, the 

mere existence Feigenbaum constant gives us hope for anticipating critical changes in 

complicated systems; in fact you should find that this prediction works for your 

measurements with your nightlight system! 
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This third home demo brings to light several key results that generalize to many 

chaotic systems. In particular, the demonstration illustrates: 

1. the potential dynamics we can generate by imposing feedback on a system; 

2. very specific behaviors to expect in chaotic systems; 

3. suggestions of ways to control a system's dynamics; 

4. ways to analyze and control a system with no need for a formula or model; 

5. how the Feigenbaum constant helps anticipate system transitions. 

Other Home Demonstrations 

Many other systems you see every day exhibit chaotic dynamics. Watch the 

cream stir into your coffee. How does a stop sign wobble in a rough wind? Think about 

the position and speed of a car along a major city's beltway. What are the states of all the 

cars traveling the beltway?13 Watch the loops and spins of a tire swing in a park. If 

you're really adventurous, hook up your home video camera so it shows a live picture on 

your television set. Then, aim the camera at the television set and zoom in and out to 

generate some exciting feedback loops. 

Consider how you might carefully describe those systems. What can you observe 

and measure in those systems; what are the important parameters? As the control 

parameters increase or decrease, what transitions in behavior should you expect? 
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I've summarized several home demonstrations in this chapter to introduce some 

intuition, as well as the vocabulary and tools of dynamical systems. I hope they spark 

your imagination about comparable systems that interests you. More important, they may 

represent your first experience with chaotic systems, so you can begin to expect and 

anticipate Chaos in your systems. The next chapter adds more detail to the vocabulary 

and results introduced here. 
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TWO 

Definitions, Tools and Key Results 

Of all the possible pathways of disorder, 

- James Gleick 

nature favors just a few. 

Introduction 

The previous chapter described a few simple demonstrations so we could begin to 

develop some basic intuition for chaotic dynamics. I also used some of the associated 

Chaos vocabulary in those demos in order to introduce the definitions in the context of 

real systems. Detailed definitions require too much time to present in full. However, we 

need to spend time reviewing some vocabulary with care, since the tools to observe and 

explore complex dynamics are linked closely to the vocabulary we use to describe our 

observations.   Rather than pore through excruciating details of precise definitions, this 
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chapter concentrates on the consequences of the definitions. My focus will be to answer 

questions such as, "What does it mean to be an attractor?" 

We'll narrow the discussion to the most important issues: What is Chaos? How 

can we test for it? What does it mean to me if I have Chaos in my system? By 

concluding with a summary of Chaos Theory's key results, we'll pave the way for later 

chapters that suggest ways to apply those results. 

For this chapter, I'll rely on two classic chaotic systems: the logistic map and 

Lorenz' equations for fluid convection. These two examples reinforce some of the 

lessons we learned in the last chapter, and they make a nice bridge to the military systems 

we'll examine in the next chapter. In particular, I'll apply common Chaos tools to these 

two examples, so you can visualize the kind of new information Chaos Theory can 

provide about a system's behavior. 

The Logistic Map 

What's the system? In the early seventies, biologist Robert May researched the 

dynamics of animal populations. He developed a simple model that allowed for growth 

when a population of moths, for instance, was small; his model also limited population 

growth to account for cases of finite food supply.15 His formula is known as the logistic 

equation or the logistic map. 
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What are we observing and measuring? The logistic map approximates the 

value of next year's population, x[n+l], based on a simple quadratic formula that only 

uses information about this year's population, x[n]: 

x[n+l]   =  X x[n] (1 - x[n]). (2) 

The parameter X quantifies the population growth when x[n] is small, and X takes on 

some fixed value between 0 and 4. In any year n, the population x[n] is measured as a 

fraction, between 0 and 1, of the largest community possible in a given physical system. 

For example, how many fish could you cram into the cavity filled in by a given lake? 

The population x[n] expresses a percentage ofthat absolute maximum number offish. 

It's not too hard to illustrate the dynamics of the logistic map on your home 

computer. Even with a spreadsheet program, you can choose a value for X and a starting 

value for x[l], and calculate the formula for x[2]. Repeated applications of the formula 

indicate the changes in population for as many simulated "years" as you care to iterate. 

Some of the dynamics and transitions you should expect to see will be discussed in this 

chapter. 

What's the significance? One helpful simplification of May's model was his 

approximation of continuously changing populations in terms of discrete time intervals. 

Imagine, for instance, a watch hand that jerks forward second by second instead of 

gliding continuously. Differential equations can describe processes that change smoothly 

37 



over time, but differential equations can be hard to compute. Simpler equations like the 

logistic map, difference equations, can be used for processes that jump from state to 

state. In many processes, such as budget cycles and military force reductions, changes 

from year to year are often more important than changes on a continuum. As Gleick says, 

"A year-by-year facsimile produces no more than a shadow of a system's intricacies, but 

in many real applications the shadow gives all the information a scientist needs." 

The additional beauty of the logistic map is its simplicity. The formula includes 

nothing worse than an x2 term—how badly can this model behave? Very shortly, you'll 

find that this simple difference equation produces every significant feature common to 

most chaotic systems. 

The Lorenz Equations 

What's the system? Meteorologist Edward Lorenz wanted to develop a 

numerical model to improve weather predictions. Focusing on a more manageable 

laboratory system, the convection rolls generated in a glass of heated water, Lorenz 

modified a set of three fairly simple differential equations: 

x'   =  -tjx + oy 

y'   =   Rx-y-xz (3) 

z'   =  -Bz + xy 
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What are we observing and measuring? The phase variables, x, y and z combine 

measurements of the flow, as the heated water rises, cools, and tumbles over itself 

(Figure 9). The x variable, for instance, is proportional to the intensity of the convection 

current; y is proportional to the temperature difference between the rising and falling 

currents. The numbers cr, R and B are the system's physical parameters, which Lorenz 

set at a = 10, R = 28, and B = 8 / 3 . As the phase variables change in time, they trace 

out fascinating patterns, like those illustrated in Figure 9b. 

/ \ 

nr 
(a)   The System (b)  A Trajectory in Phase Space 

Figure 9. Lorenz' Weather-in-a-Beaker. 

What's the significance? The Lorenz equations crudely model only one simple 

feature of fluid motion: temperature-induced convection rolls. However, even in this 

simple system, Lorenz observed extreme sensitivity to initial conditions, as well as other 

symptoms of Chaos we'll see momentarily. He clearly proved that our inability to 

predict long-term weather dynamics was not due to our lack of data.   Rather, the 
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unpredictability of fluid behavior is an immediate consequence of the nonlinear rules 

that govern its dynamics. 

Definitions 

Now that we have two new systems to work with, along with the "experience" of 

our home demonstrations, let's highlight the vocabulary we'll need to discuss more 

complicated systems. 

Dynamical System. Recall how we defined a system as a collection of parts along with 

some recipe for how those parts move and change. We use the modifier dynamical to 

underscore our interest in the character of the motions and changes. In the case of the 

logistic map, for example, the system is simply a population measured at regular time 

intervals; the logistic equation specifies how this system changes in time. 

Linear and Nonlinear. The adjective linear carries familiar geometrical connotations, 

contrasting the linear edge of a troop deployment, for example, with the curved edge of 

a beach. In mathematics, the concept of linearity takes on broader meaning to describe 

general processes. We need to understand linearity because isolated linear systems can 

not be chaotic. Moreover, many published explanations of linearity make serious errors 

that may prevent you from grasping its significance. 
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Some authors condense the definition of linearity by explaining that, in a linear 

system, the output is proportional to the input. This approach may be helpful when we 

model the lethality of certain aircraft, saying that three sorties will produce three times 

the destruction of a single sortie. However, I want you to get at least one more level of 

deeper insight into linearity. I'll build that insight from our first home demonstration, the 

pendulum. 

Even though a pendulum swings in a curve, and we describe its motion with sine 

and cosine functions, an ideal pendulum is a linear system! It's linear because the 

equation that defines its motion has only linear operations: addition, and 

multiplication by constants. Common nonlinear operations, of course, include 

exponents, trigonometric functions and logarithms. The important consequence for us is 

that the solutions to most linear systems are completely known. This may not seem 

earth-shattering for a single pendulum, but many oscillating systems?—such as vibrating 

aircraft wings, mooring buoys, and concrete structures subjected to shock waves—behave 

just like a collection of coupled pendula. Therefore, as long as they aren't regularly 

"kicked" by external forces, those real systems are just enormous linear systems whose 

range of possible motions is COMPLETELY KNOWN! 

Without delving into the subtleties of more analytical definitions, here are some 

important consequences of the property of linearity: 

The solutions to linear systems are known (exponential growth, decay, 
or regular oscillations), so linear systems can't be chaotic. 
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"Kicking" or forcing an otherwise linear system can suffice to drive it 
into Chaos. 

If you observe Chaos in a system, there must be some underlying 
nonlinear process. 

This discussion of linearity should serve as a wake up call. Basically, if you have 

a system more complicated than a pendulum, or if you see an equation with nonlinear 

terms, you should be alert for possible transitions from stable behavior to Chaos. This is 

certainly a simplification, since many systems include control mechanisms that stabilize 

their dynamics, such as feedback loops in human muscles or in aircraft control surfaces. 

However, the minimum ingredients that make Chaos possible are usually present in 

systems like these. In the absence of any reliable control, unpredictable dynamics are not 

difficult to generate. 

Phase Space and Trajectories. A system consists of components and their rules of 

motion. To analyze a system we must also decide exactly what properties of those 

components we will measure and record. All the time-dependent properties necessary to 

determine the system dynamics are known as the system's phase variables. The 

collection of all possible combinations of values those variables can attain is then the 

phase space for our system. 

Phase space is the canvas where we paint a system's dynamics. The Lorenz 

equations, for example, define the time-dependent changes of fluid flow in a heated 

beaker of water. If we start at some initial state and let the system evolve in time, we can 
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keep track of how the three system variables change. We can then plot that information 

with a three-dimensional curve (Figure 9b). Notice that the curve does not directly 

illustrate the physical motion of the water. Rather, the curve indicates changes in all 

three phase variables; at least one of these—the temperature gradient, y—quantifies 

changes we can't see. The plot's entire three-dimensional space constitutes the phase 

space for the Lorenz equations; we call the single curve that leaves a particular initial 

state the trajectory (or trajectory in phase space) for that initial condition. 

Parameter. A parameter is a quantity that appears as a constant in the system's 

equations of motion. The logistic map has only one parameter, X , which expresses the 

rate of growth for small populations. A pendulum's parameters include its mass, the 

length of its string. Sometimes, a parameter expresses a physical constant in the system, 

such as the gravitational constant for the pendulum. Most important, a system parameter 

often represents a control knob, an opportunity for us to control the amount of energy 

in a system. 

For instance, we saw earlier how changes in flow rate, the key parameter for the 

dripping faucet, drove transitions in system output. In the following section on Chaos 

Tools, we'll see how the logistic map undergoes transitions as we increase X, from 0 to 

4. It's important to note that, even in relatively simple systems like the faucet, there are 

many influential parameters that are not easily controlled: spout diameter, mineral content 

of the water, local humidity, spout viscosity, etc. One crucial skill for any decision maker 
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is the ability to identify all the parameters accessible to external control, and to isolate 

those parameters that have the greatest influence on a system. 

Sensitivity to Initial Conditions (SIC). Any system "released" from its initial state will 

follow its laws of motion and trace out some trajectory in phase space, just as we saw 

with the logistic map above. However, if a system is SIC, we also know that any two 

initial states that deviate by the slightest amount must follow trajectories that diverge 

from each other exponentially. Look at Figure 10. The lower time series started from an 

initial population only slightly greater than the upper case; after about 16 iterations, the 

two trajectories bear no resemblance to each other. This is an illustration of SIC. 

We can measure how fast neighboring trajectories tend to diverge. At any 

given point in phase space, a Lyapunov (lee-OP-uh-nofjf) exponent quantifies this rate 

of divergence. This exponent has properties that come from its role as the constant k in 

the exponential function e k' : if k is negative, then small disturbances tend to get 

smaller, indicating no SIC; if k is positive, small perturbations increase exponentially. 

With these measurements, we can get a handle on how "touchy" a system is, how 

vulnerable the system may be to external disturbances, and how unpredictable the 

consequences of our actions may be. We can often calculate an average Lyapunov 

exponent for an entire region of phase space. This value gives us a means to compare 

two systems, or two scenarios, and decide which one tends to be more or less predictable. 

Information like this could prove valuable for prioritizing the courses of action available 

to a commander. 
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Many systems are SIC, including some non-chaotic systems. For example, take 

the simplest case of exponential growth, where a population at any time t is given by a 

recipe such as: e3\ This system is SIC, but certainly not chaotic. What does this mean 

for us? If your system is SIC, you're not guaranteed to find Chaos. However if your 

system is not SIC it can not exhibit Chaos. Thus, we've identified SIC as a necessary 

but not sufficient condition for Chaos to occur. 

(a) x[l] = 0.2027 

trajectories differ dramatically after this (b) xflj = 0.202701 
\ 

Figure 10. Chaotic Trajectories of the Iterated Logistic Map. 19 
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Attractors. Despite the fact that chaotic systems are SIC, and neighboring trajectories 

"repel" each other, those trajectories still confine themselves to some limited region of 

phase space. This bounded region will have maximum and minimum parameter values 

beyond which the trajectories will not wander, unless perturbed. In the logistic equation, 

the population remains bounded between the extreme values of 0 and 1, though it seems 

to take on every possible value in between, when it behaves chaotically. 

In the Lorenz equations, the trajectories also stay within finite bounds, but the 

trajectories do not cover all the possible values within those limits. Instead, a single 

trajectory tends to trace out a complicated, woven surface that folds over itself in a 

bounded region of phase space (Figure 9). The collection of points on that surface is an 

attractor for those dynamics; the classic Lorenz attractor is a particularly striking 

example. 

Left to itself, a single trajectory will always return to revisit every portion of an 

attractor, unless the trajectory is perturbed. All chaotic, or strange, attractors have this 

mixing property, where trajectories repeatedly pass near every point on the attractor. 

Just envision where a single drop of cream goes as you stir it into your coffee. You 

could also imagine the path of a single speck of flour as you knead it into a ball of dough. 

If you continue mixing long enough, you'd expect the small particle to traverse every 

neighborhood of its space. Actually, one of the best ways to sketch a rough image of an 

attractor is simply to plot a single trajectory in phase space for a very long time. 
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Transient states are all the initial conditions off the attractor that are never 

revisited by a trajectory. If we gather together all the transient states that eventually 

evolve toward a single attractor, we define the basin of attraction for that attractor. 

Thus, the basin represents all the possible initial states that ultimately exhibit the same 

limit dynamics on the attractor. In the Lorenz system, for instance, we might start the 

system with a complicated temperature distribution by dropping an ice cube into hot 

water. However, that transient extreme will die out and, after a while, the system must 

settle down onto the collection of temperature variations that stay on the attractor. 

Because of SIC, we can't predict the precise state of the Lorenz system at any given time. 

However, because the attractor draws dynamics toward itself, we do know what the 

trends in the dynamics have to be! 

When we examine those trends closely, we find that a single trajectory visits 

different regions of the attractor more often than others. That is, if we color each point 

on the attractor based on how often the trajectory passes nearby, we'll paint a richly 

detailed distribution of behavior on the attractor. To picture this, visualize the 

distribution of cars on the interstate beltway around a big city. At any point, on a given 

day, we could note the number of vehicles per mile, and begin to identify patterns of 

higher traffic density for certain times of day. You could continue and consider the 

distribution of cars on whatever scales interest you: all interstates; all streets; just side 

streets. Even though you can't predict the number of cars present on any particular street, 

these distributions and patterns give you crucial information on how the overall system 

tends to behave. 
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The properties of attractors are key signposts at the junction where Chaos Theory 

matures past a mere metaphor and offers opportunities for practical applications. 

Attractors provide much more information than standard statistical observations. This is 

because an attractor shows not only distributions of system states, but also indicates 

"directional" information, that is, how the system tends to proceed away from its current 

state. As a result, when we construct an attractor we reconstruct an image of the 

system's global dynamics—without appealing to any model! In subsequent chapters, 

we'll see how this reconstruction allows us to predict short-term trajectories and long- 

term trends, to perform pattern recognition, and to carry out sensitivity analysis to 

help us make strategic decisions. 

Fractal. Though there are standard definitions of several types of fractals, the important 

consequence for us is that fractals describe the complexity, or the amount of detail, 

present in objects or data sets. If we think of a well-defined line, like the y-axis on a 

graph, we call it one-dimensional because one piece of information, the y-coordinate, 

suffices to pinpoint every position on the line. To get an idea of what dimension means 

in a fractal sense, imagine zooming in on a line, with a microscope. However intently 

you zoom in, the most detail you can expect to see is a razor thin line cutting across your 

field of view (Figure 1 la). If you focus your microscope, instead, on a two-dimensional 

object like a square, sooner or later your narrow field of view will fill with an opaque 

image. You need two coordinates to pinpoint any place on that image. 
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On the other hand, a fractal image has a non-integer dimension. An image with 

dimension 1.7, for instance, has more detail than a line, but too many holes to be worthy 

of the title two-dimensional. Fractal images contain infinite detail when we zoom in 

(Figure 1 lb). The good news is that the extraordinary detail present in fractal images can 

be generated by very simple recipes. 

21 (a) A line is just a line. (b) Ferns within ferns: 

Figure 11.   Fractal Dimension: Always More Detail When You Zoom. 

The study of fractal geometry becomes important to military applications of 

Chaos in three main areas: image compression, dimension calculations, and basin 

boundaries. In image compression, the infinite detail generated by simple sets of 

instructions allows us to compress images by transmitting the instructions rather than 

pixel-by-pixel images. The second application, dimension calculation, is possible with 

time series as well as with geometric figures; when we calculate the dimension of a 

sequence of data points, we get an estimate of the minimum number of variables 

needed to model the system from which we measured the data!  Finally, many systems 
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that have two or more attractors also have two or more basins of attraction. Very often, 

the boundaries between basins are not smooth lines. Instead, the basins overlap in 

fractal regions where one initial condition may lead to steady state behavior, but any 

nearby initial condition could lead to completely different behavior. Consider the 

illustration in Figure 12, the basins of attraction for a numerical model. All the initial 

conditions shaded white lead to one kind of behavior; all the dark points lead to entirely 

different behavior. A commander making decisions in such an environment will have to 

be alert—small parameter changes, in certain regions, produce dramatic differences in 

outcomes. 22 

Figure 12. Fractal Boundaries Between Basins of Attraction. 23 

Bifurcation.    Bifurcation theory represents an entire subdiscipline in the study of 

dynamical systems.   I mention bifurcations here for two reasons.   First, so you will 
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recognize the word in other references. In the context of the demos we've seen so far, a 

bifurcation is simply a transition in dynamics. Our faucet, for example, drips slowly 

when the flow rate is low. At some higher flow rate, the drops come out with period-2; 

we say the system has undergone a bifurcation from one kind of periodicity to another. 

Notice that a bifurcation is a qualitative transition in system dynamics due to a change in 

a control parameter. 

The second reason I surface this new vocabulary word is to highlight the 

universality of bifurcation types. That is, when you modify one of your system 

parameters, you may see subtle bifurcations, or catastrophic bifurcations, but a few 

classes of bifurcations are common to many dynamical systems. Recall the discussion 

of transitions in our home demo with the night-light. The transitions came at smaller and 

smaller intervals, roughly according to patterns predicted by the Feigenbaum constant. 

Well, Mitchell Feigenbaum first discovered this constant through his study of the logistic 

map, where transitions occur in the same pattern as in the night-light. Overall, the most 

important consequence is that many transitions in behavior are universal in apparently 

unrelated physical systems. 

Dense, Unstable, Periodic Orbits. Let's look at one last feature of the logistic map 

that ultimately makes it possible for us to control chaotic systems. I'll talk much more 

about Chaos control in the next chapter. For now, be patient as we take a few steps 

through the dynamics of the logistic map in order to glimpse the complicated activity on 

an attractor, as illustrated in Figure 13. 
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X = 4.0 

77ze parabolas trace out the logistic equation. The diagonal line holds the current 
population value, xfnj, until we iterate again, drawing a new vertical line to the 
parabola. These "web diagrams" illustrate the long-term behavior of iterates. 

Figure 13.   Graphical Iteration of the Logistic Map, 
25 

Suppose you set the parameter to a small value, say X = 1.8. You can start the 

system with x[l] anywhere between 0 and 1, and successive iterations of the logistic 

equation will always drive the value of x[n] toward 0.44, a stable fixed point. If we 

increase X ' to 2.75, the system still has a stable fixed point, but that point is now 

around 2/3. We raised the control parameter, but we observed no qualitative changes in 

behavior.  However, if we raise  X  slightly above 3, the system does not settle into a 
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fixed point, but falls into a cycle of period-2. Thus, at X = 3 we see a bifurcation from 

stable to periodic behavior. 

Transitions come hand-in-hand with changes in stability. Any system might 

have both stable and unstable behaviors. The equations governing a pencil standing on 

its point have a good mathematical solution, with the center of gravity directly above the 

point—but you cannot stand a pencil on its point because that state is unstable. That is, 

the slightest perturbation draws the system away from that state. On the other hand, a 

marble lying at the bottom of a bowl stays there, because if the marble is perturbed 

slightly in any direction, it just rolls back. 

The important feature for us hides in the chaotic trajectory smeared out in 

Figure 13, when X = 4. Inside that smear—4he attractor for this chaotic system—-many 

periodic cycles still exist, on paper, that is. The fixed point, for instance, still lives at the 

place on the graph where the parabola intersects the diagonal. However, that point is 

unstable, so a trajectory can never approach it. Similarly, we can calculate 

trajectories of period-2, period-3, actually every possible period. In fact, there are 

infinitely many unstable, periodic trajectories woven through the attractor, woven 

thickly in a way mathematicians call dense. That means every area surrounding every 

point on the attractor is crowded with these "repelling" unstable, periodic trajectories. 

So, on one hand, it's not useful to locate any of these periodic behaviors, because 

all these trajectories are unstable. On the other hand, recent experiments have 

demonstrated ways to force the system to follow one of these periodic behaviors. This 
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is the power of Chaos control; as we'll see later, the density of these trajectories is the 

property that makes this control possible. 

So How Do We Define Chaos? 

A chaotic system MUST be: 

• bounded; 

• nonlinear; 

• non-periodic; 

• sensitive to small disturbances; 

• mixing. 

A chaotic system usually has the following observable features: 

• transient and limit dynamics; 

• parameters (control knobs); 

• definite transitions to and from chaotic behavior; 

• attractors (often with fractal dimensions). 

What's the significance of these properties?    Measurements of transient and limit 

dynamics in a system provide new information not available to us before the advent of 
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Chaos Theory. Our comprehension of the role of parameters in system dynamics offers 

opportunities for new courses of action, to be described in subsequent chapters. Finally, 

the common properties of system transitions and attractors suggest new expectations of 

system behavior, as well as new strategies for coping with those expectations. For other, 

more detailed characteristics of chaotic data—such as exponentially decaying correlation, 

and broad power spectra—you can refer to any one of the texts described in Chapter 5: 

Suggestions for Further Reading. 

This is, perhaps, not so much a definition, as it is a list of necessary ingredients 

for Chaos in a system. That means, without any one of these properties, a system can not 

be chaotic; I believe my list is also sufficient, so if a system has all these properties, it 

can be driven into Chaos. 

Random. You may look at the above definition of Chaos and wonder if the processes we 

call random have those same properties. For those interested in more detail, a discussion 

of one definition of random appears in the Appendix. However, I'll pause here to focus 

on one difference between random and chaotic dynamics. Please be aware that I'm 

ignoring some large issues debated by Chaos analysts. Some argue, for instance, that the 

kind of dynamics we now call "random"—like a roulette wheel—simply come from 

chaotic systems, with no random variables, where we just don't know the model. In 

other cases, "noise," or random imperfections in our measurements—like radio 

static—may come from Chaos that happens on a scale we haven't yet detected. For our 

purposes, the primary feature distinguishing chaotic from random behavior is the 
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presence of an attractor that outlines the dynamics towards which a system will 

evolve.27 Existence of such an attractor gives us hope that these dynamics are 

repeatable. 

In the water drop experiment, for example, if results were random, the experiment 

would not be repeatable. However, if you and I both run this test, I can list my 

experimental parameters for you—such as nozzle diameter and flow rate—and the key 

features of this system's dynamics will be replicated precisely by our two separate 

systems. Slow flow is always periodic. The system undergoes period doubling 

(period-2, then period-4,...) on the way to Chaos, as we increase the flow rate. Most 

important, for high flow rates, your chaotic return map for time differences between 

drops will produce a smear of points nearly identical to mine! If the system were 

exhibiting random behavior, these global features would not be reproducible. 

The Chaos Con 

Before we leave this review of basic Chaos vocabulary, we need to examine the 

common mistakes and misrepresentations that appear in many papers on the subject. The 

sum of these errors constitutes The Chaos Con, the unfortunate collection of misleading 

publications that tend to crop up when new researchers investigate new topics. 

Everybody's taken up the best titles for articles, and published them, without always 

presenting the most thorough results. The Con may come from well-intentioned authors, 

new to the subject, who miss some key concepts because they're constrained by time. 
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Other Cons may come in contract proposals from cash-starved analysis groups who might 

try to dazzle you with the sheer volume of their Chaos vocabulary. It's very important to 

avoid The Con, both intentional and innocent, but most of all, don't con yourself by 

making any of the following common errors! 

"Chaos is too difficult for you." Don't let anyone fool you: if you finished college, you 

can follow the basics of Chaos. Be suspicious of anyone who tries to tell you that the 

general concepts are beyond your grasp. Some authors will disguise this false claim with 

subtle references to the "mysteries of Chaos" or "mathematical alchemy" or other 

vocabulary designed to intimidate their readers. Don't believe it, and don't pay these 

folks to teach you Chaos. You can learn it—just remember to take your time. 

"Linear is...." Remember that some writers will oversimplify the definition of 

linearity by waving their pen quickly at some phrase like "output is proportional to 

input." That comment is only true if a system's output and input are very carefully 

defined. Never forget that pendula, swings, and springs are all linear systems! Make 

sure your author's definition for linearity admits these three important physical systems. 

Bifurcation. What exactly bifurcates? Trajectories don't bifurcate, as I've seen some 

authors claim. A single trajectory can only do one thing. We may have a limited 

capacity to predict that behavior, but—like a light bulb can only be on or off at any fixed 

time—a single system can only evolve through one state at a time.   Remember that a 
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bifurcation is a qualitative change in system behavior that we observe as we change 

parameter settings. 

"Complicated systems MUST be chaotic." Just because a system is complicated or has 

many components, that system does not necessarily allow Chaos. For instance, many 

large systems behave like coupled masses and springs, whose linear equations of motion 

are completely predictable. Similarly, other large systems include reliable control 

mechanisms that damp out perturbations and do not permit sensitive responses to 

disturbances. Such systems do not exhibit Chaos. 

"We NEED many variables for Chaos." Many of the same authors who claim big 

systems must be chaotic, also propagate the fallacy that simple systems can not exhibit 

Chaos. Nothing could be further from the truth. In fact, the power of Chaos Theory is 

that the simplest interactions can generate dynamics of profound complexity. Case in 

point: the logistic map produces every symptom of Chaos described in this paper. 

"Butterflies cause hurricanes." When Edward Lorenz presented his findings of SIC in 

weather systems, he described The Butterfly Effect, the idea that the flapping wings of a 

butterfly, in one city, will eventually influence the weather patterns in other cities. This 

phenomenon is a necessary consequence of the sensitivity of fluid systems to small 

disturbances. However, The Butterfly Effect often gets lost in the translation. Be wary of 

authors who suggest that a butterfly's flap in Florida will become amplified somehow 
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until it spawns a hurricane in California! Believe it or not, several often-cited reports 

make this ridiculous claim. Make no mistake, if a weather system has enough energy to 

produce a hurricane, then the storm's path will be influenced by butterfly aerodynamics 

across the globe. However, the system does not amplify small fluid dynamics; rather, it 

amplifies our inability to predict the future of an individual trajectory in phase space. 

"Chaos" versus "chaos". One of the first signals of a weak article is when the author 

inconsistently mixes comments on mathematical Chaos and social chaos. If we can't 

distinguish between the two, we can't get past the metaphors of Chaos to practical 

applications. As we'll discuss below, the existence of Chaos brings guarantees and 

expectations of specific phenomena: attractors; complex behavior from simple 

interactions; bounded, mixing dynamics; universal transitions from stable to erratic 

behavior. 

The worst consequence of The Chaos Con is that the well-intentioned reader may 

not discern the important results of Chaos Theory. These results highlight the common 

characteristics of chaotic dynamics that provide a useful template for the kinds of 

dynamics and applications we should expect in a chaotic system. A discussion of the 

results I consider most important follows here; my explanation of their applications 

constitutes the remaining portion of this essay. 
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TOOLS of Chaos Analysts. 

One of the most important outcomes of the study of Chaos Theory is the 

extraordinary array of tools that researchers have developed in order to observe the 

behavior of nonlinear systems. I can not emphasize enough that these tools are designed 

not only for simulated systems. We can calculate the same information from time series 

measurements, when there is no model available, and often when we can only 

measure one variable in a multi-variable system! Moreover, decision makers need the 

skills to differentiate random behavior and Chaos, because the tools that allow us to 

understand, predict and control chaotic dynamics have no counterpart in random systems. 

For the military decision maker who needs these tools, two issues stand out: 

What are the preferred tests for deciding if a system is chaotic? 

How can we tell the difference between random and Chaos? 

The analytical tools used by Chaos analysts answer these questions, among many 

others. This brief summary of the most basic tools begins with an important reminder. 

We always need to begin our analysis by answering two additional questions: what is the 

system, and what are we measuring? For example, recall the dripping faucet system, 

where we observe the dynamics, not by measuring the drops themselves, but by 

measuring time intervals between events. Only after we answer those two questions 

should we move on to consider some of the qualitative features of the system dynamics: 
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• What are my parameters? Can I control their magnitude? 

• Does the system perform many repetitions of its events? 

• Are there inherent nonlinearities or sources of feedback? 

• Does the phase space appear to be bounded? Can we prove it? 

• Do we observe mixing of the phase variables? 

When we have a good grasp of the general features of our system, we can begin to make 

some measurements of what we observe. We should note, however, that our aim is not 

merely to passively record data emitted from an isolated system. Very often, our interest 

lies in controlling that system. In an article on his analysis of brain activity, Paul Rapp 

summarizes: 

Quantitative measures [of dynamical systems] assay different aspects of 
behavior, and they have different strengths and weaknesses. A common 
element of all of them, however, is an attempt to use mathematics to 
reconstruct the system generating the observed signal. This contrasts 
with the classical procedures of signal analysis that focus exclusively on 
the signal itself 

Therefore, keep in mind that the tools presented here are not used for observation only. 

They provide the means to re-create a system's rules of motion, to predict that 

motion, over short time scales, and to control that motion. 

Depicting Data. We've already encountered most of the basic tools used for observing 

dynamical   systems.      The   two   simplest   tools—time   series   plots   and   phase 
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diagrams—display raw data so we get a qualitative picture of the data's bounds and 

trends. A time series plot graphs a sequential string of values for one selected phase 

variable, as in the plot of population variation for the logistic map in Figure 10. 

Sequential graphs give us some intuition for long-term trends in the data and for the 

system's general tendency to behave periodically or erratically. 

Phase diagrams trace the dynamics of several phase variables at the same time, 

as the Lorenz attractor does in Figure 9. The first piece of information apparent from a 

good phase diagram is the nature of the system's attractor. The attractor precisely 

characterizes long-term trends in system behavior—how long the system spends in any 

particular state. This information translates directly into probabilities. 

Attractors and Probabilities. As a demonstration of translating attractor dynamics into 

probabilities, consider the chaotic trajectories of the logistic map shown in Figure 13. 

The awful smear of trajectories makes it obvious that the population x[n] takes on most 

of the values between 0 and 1, but is the smear of values evenly distributed across that 

range? One way to find out is to build a quick histogram: divide the interval from 0 to 1 

evenly into a few hundred subintervals; keep a count of every time the evolving 

population x[n] visits each subinterval. Figure 14 shows the results of such a calculation; 

we see from the figure that the trajectory of the logistic equation spends a great deal more 

time closer to 0 and 1 than it does near other values. To illustrate, if this equation 

modeled the number of troops assigned to a certain outpost, a distribution like this would 
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tell a commander that the site tends to be folly staffed or nearly vacant, with little 

probability of other incremental options. 

10- 

■■ 

0                                                                            1 

29 
Figure 14. Distribution of Logistic Map Dynamics. 

Probability information like this has several immediate uses. First, of course, are 

the probability estimates that commanders require to prioritize diverse courses of action. 

Second, analysts can use this information to compare models with real systems, to gauge 

how well the distribution of a simulated system relates to real data. Third, since many 

simple chaotic systems use non-random formulas to generate distributions of behavior, 

the resulting distributions can be used in various simulations, to replace black-box 

random number generators. I'll discuss these applications in greater detail in 

Chapter Four. 

Attractors and Sensitivity. As a single trajectory weaves its way through its attractor, we 

can also calculate local Lyapunov exponents at individual points, on the attractor, as well 

63 



as an average Lyapunov exponent for the entire system. Remember, this exponent 

measures how sensitive trajectories are to small disturbances. Therefore, details about 

these exponents can guide decision makers to particular states where a system is more or 

less vulnerable to perturbation. The same exponents can also be calculated for various 

ranges of parameter settings, so commanders can discern which variables under their 

control may produce more predictable (or unpredictable) near-term outcomes. 

Embedding. However directly we might calculate system features like attractors and 

Lyapunov exponents, how is it we can apply these tools to a real system where we have 

no descriptive model? Suppose we have a complicated system—like the dripping 

faucet—that gives us a time series with only one variable. What can we do? 

The answer comes from a powerful technique known as embedding. Very 

simply, we can start with a sequence of numbers in a time series, and instead of isolating 

them as individual pieces of data, we can group them in pairs. The resulting list of pairs 

is a list of vectors that we can plot on a two-dimensional graph. We can also start over 

and package the data in groups of three, creating a list of vectors we can plot in three- 

dimensions, and so on. This process embeds a time series in higher dimensions and 

allows us to calculate all the features of the underlying dynamics from a single time 

series! 

The suggested reading list in Chapter Five offers several sources that discuss this 

technique in detail. For now, though, be aware of the power of embedding as a 

measuring instrument: 
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• By embedding a time series we can calculate the fractal dimension of a 

data set. Since random data have theoretically infinite dimension, and 

many chaotic systems have smaller dimensions, this is one of the first 

tools we use to distinguish noise from Chaos. Even more important, the 

dimension of a time series measures the amount of detail in the underlying 

dynamics and actually estimates the number of independent variables 

driving the system. So, when Tagarev measures a fractal dimension of 

2.9 for a time series of aircraft sorties (Figure 2), he presents strong 

evidence that the underlying system is not random, but it may be driven 

30 
by as few as three key independent variables. 

• Recent studies of embedded time series have also uncovered ways to use 

the embedding as a vast, generalized grid through which we can 

interpolate to approximate a system's dynamics. In this way, researchers 

have made tremendous strides in predicting the short-term behavior of 

chaotic systems! I'll discuss more details of these results in Chapter Four. 

And Much, Much More.... The above list of tools represents only a small sample of 

the standard analytical tools currently in use. Consult the references I highlight in 

Chapter Five to find complete discussions of these and other tools, such as: return maps, 

Poincare sections, correlations, Fast Fourier Transforms, and entropy calculations.  This 
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tremendous toolbox is the primary source of the new information that Chaos Theory 

brings to decision makers. 

RESULTS of Chaos Theory 

Let's pause to gather together the theoretical results scattered through these first 

two chapters. First, I'll summarize the common features of chaotic systems. Then, I'll 

review what it means for us to have Chaos in our systems. 

Here is a brief snapshot of the common characteristics of Chaos, a sample of what 

to expect in a chaotic system. I've highlighted most of these characteristics in the 

examples we've seen up to this point. 

We don't need much in a system in order for Chaos to be possible. In most 
physical systems, whose smooth changes in time can be described by 
differential equations, all we need are three or more independent variables and 
some nonlinear interaction. In difference equations, like the logistic map, 
where change occurs at discrete time intervals, all we need is a nonlinear 
interaction. 

Most systems have accessible parameters, system inputs we can control to 
adjust the amount of energy in the system. We should expect systems to have 
qualitatively different behaviors over different parameter ranges. 

Surprisingly common transitions, from stable equilibria to periodicity and 
Chaos, occur in completely unrelated systems. 

• Influential dynamics occur on many different scales. For instance, the cloud 
cover that concerns us during a combat operation is affected by the 
hyperactivity of butterflies across the globe. To understand the larger scale 
dynamics, we may or may not need to consider the smaller scales. 
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Attractors draw trajectories towards themselves. So, if attractor exists (in 
an isolated system), and the state of your system is in that attractor's basin, the 
system can't avoid proceeding toward the attractor. Dynamics on the attractor 
represent global trends of the underlying system, and they set global bounds 
on system behavior. The density of trajectories on the attractor also reveals 
the relative distribution of behavior. 

Because of the trajectory mixing that takes place on attractors, the attractors 
are immersed in dense weavings of unstable periodic trajectories. The 
presence of these potential periodic behaviors makes Chaos control possible. 

The universal nature of the above properties helps us answer a somewhat bigger 

question: 

What does it mean to me to have Chaos in my system? 

One consequence of understanding the results of Chaos Theory is that, if we are 

confident that a system can behave chaotically, then we know that it must have all the 

properties of Chaos. Some of these properties are hard to prove, but we "get them for 

free" if we know the system is chaotic. In particular, if a system is known to be chaotic, 

then we know, for example, that any models ofthat system must include nonlinear terms. 

We also know we have avenues available to control the system. That is, any attractor for 

that system is densely woven with unstable periodic trajectories toward which we can 

drive the system (see the discussion of Chaos Control coming in Chapter Four). 
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In a 1989 Los Alamos report, David Campbell and Gottfried Mayer-Kress 

summarize their "lessons of nonlinearity": 

1. Expect that nonlinear systems will exhibit bifurcations, so that small changes in 
parameters can lead to qualitative transitions to new types of solutions. 

2. Apparently random behavior in some nonlinear systems can in fact be described 
by deterministic [non-random] chaos. 

3. Typical nonlinear systems have multiple basins of attraction, and the 
boundaries between different basins can have incredibly complicated fractal 
forms. 

4. Our heightened awareness of the limits to what we can know may lead to more 
care and restraint in confronting complex social issues. 

5. The universality of certain nonlinear phenomena implies that we may hope to 
understand many disparate systems in terms of a few simple paradigms and 
models. 

6. The fact that Chaos follows from well-defined dynamics with no random 
influences means that in principle one can predict short-term behavior. 

7.   The dense paths of trajectories on an attractor make Chaos control possible. 
31 

To the above list, I'd add that a basic understanding of Chaos brings not only 

limits to what we can know, but, more important, new information about the dynamics 

that are possible. In the next chapter I'll outline some common military systems where 

you can expect to see Chaos. Then, in Chapter Four, we'll be ready to learn how to apply 

all these results. 
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PART II 

Who NEEDS Chaos Theory? 

Applications 

Big whorls have little whorls 
Which feed on their velocity, 
And little whorls have lesser whorls 
And so on to viscosity. 

Lewis F. Richardson 

Thank heaven 
For little whorls 

not quite Maurice Chevalier 
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THREE 

Expect to See Chaos 

Specific Military Systems and Technology 

Chaos Theory does not address every military system. However, while some 

authors still treat Chaos as a fashionable collection of new cocktail vocabulary, Chaos is 

neither a passing fad nor a mere metaphor. The extensive applications of Chaos to 

military systems make it imperative for today's decision makers to be familiar with the 

main results of the theory. This chapter is a quick review of the typical technologies 

where you should expect to see chaotic dynamics in military systems. The chapter is 

intentionally broad, since many more systems appear in Chapter Four, where we start to 

apply Chaos results. The present discussion concludes with a necessary review of the 

theory's limitations, as well as a summary of the implications of Chaos' pervasiveness. 

Recall, from the previous chapter: you don't need much to generate chaotic 

dynamics. If a system changes continuously in time—like the motion of vehicles and 

missiles—you only need three independent variables (three degrees of freedom) and some 

nonlinearity. If your system changes in discrete jumps—daily aircraft sortie rates, or 

annual budget requests—then all you need is some nonlinearity, as simple as the squared 

70 



term in the logistic map. These minimum requirements, present in countless military 

systems, do not guarantee chaotic dynamics, but they are necessary conditions. 

Other common characteristics that make a system prone to Chaos include delayed 

feedback and the presence of external perturbations, or "kicks". There are enormous 

numbers of military systems with these features. You should expect Chaos in any system 

that includes feedback, fluids or flight. The power of Chaos Theory lies in its discovery 

of universal dynamics in such systems. As this chapter proceeds from specific systems 

to general technologies, be alert for the similarities in diverse military systems. 

Naval Systems. Thompson's text on nonlinear dynamics includes a thorough discussion 

of the chaotic behavior of a specific offshore structure.33 He reports a case history in 

which chaotic motions were identified in a simple model of a mooring tower driven by 

steady ocean waves. Mooring towers are increasingly being used for loading oil products 

to tankers from deep offshore installations. These buoys are essentially inverted 

pendulums, pinned to the sea bed and standing vertically in still water, due to their own 

buoyancy. The concern in this "kicked" pendulum system is the potentially dangerous 

chaotic activity when a ship impacts the mooring. The number of impacts per cycle, 

which can be high, is an important factor to be considered in assessing possible damage 

to the vessel. 

A 1992 Office of Naval Research report summarizes a series of studies identifying 

the sources of chaotic dynamics in other ocean structures: a taut multi-point cable 

mooring system, a single-anchor-leg articulated tower, an offshore component installation 
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system, and a free-standing offshore equipment system.34 The author identifies key 

nonlinearities and analytically predicts transitions and stabilities of various structural 

responses. At the time of the report, experiments were still underway to verify the 

analysis. Ultimately, the analysis will suggest ways to control these systems better, and 

to enhance current numerical models for these systems. 

The naval applications of Chaos Theory are not restricted, of course, to stationary 

structures. A recent graduate of the Naval Postgraduate School reports the use of 

nonlinear dynamics tools to control the motion of marine vehicles. In this interesting 

application of Chaos results, the system itself does not display chaotic dynamics. 

However, the knowledge of common transitions away from stable behavior allows the 

author to improve the trajectory control of ships and underwater vehicles. 

Information Warfare. As yet nebulously defined, the subdiscipline of military science 

tagged as Information Warfare certainly includes a number of electronic systems subject 

to chaotic behavior. In many instances, chaotic dynamics contribute to the design of 

entirely new systems with capabilities made possible by Chaos Theory. One enormous 

field of application is in the area of digital image compression. Simple equations that 

generate complicated distributions allow us to translate pictures into compact sets of 

instructions for reproducing those pictures.36 By transmitting the instructions instead of 

the complete images, we can send thousands of times more information across the same 

transmission channels. 
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These fractal image compression techniques perform better on large images and 

color images than other current compression techniques. In 1991, the decompression 

speed for the fractal method was already comparable to standard industry techniques. If 

this process doesn't become the new standard for real-time communication, it will 

probably drive the performance standards for other technology developments. This 

powerful technology is already making its way into military map making and 

transmission, as well as into real-time video links to the battlefield. Other potential 

applications arise in the next chapter. 

Two additional features of electronic Information Warfare make it ripe for Chaos 

applications. First, the high-volume and high-speed of communication through computer 

networks include the best ingredients of a recipe for Chaos: modular processes 

undergoing endless iteration; frequent feedback in communications "handshaking"; 

frequencies (on many scales) faster than the time it takes many systems to recover 

between "events" (messages, transmissions, and backups). A second place to anticipate 

Chaos is anywhere the digital computer environment approximates the smooth dynamics 

of real systems.  Many iterated computations have been shown to exhibit Chaos even 

38 
though the associated physical systems do not. 

Assembly Lines. A recent book on practical Chaos applications presents a detailed 

explanation of where to expect, and how to control, chaotic dynamics in automatic 

production lines.39 The author focuses a few particular subsystems: vibratory feeding, 

part-orienting devices, random insertion mechanisms and stochastic (random) buffered 
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flows. Possible military applications include the automated control of systems such as 

robotic systems for aircraft stripping and painting, and automated search algorithms for 

hostile missiles or ground forces. 

Let me conclude this introduction to chaotic military systems by recalling the list 

of technologies in the 1991 Department of Defense Critical Technologies Plan.4 This 

time, though, we can note the most likely places where these technologies overlap with 

the results of Chaos Theory: 

1. semiconductor materials & microelectronic circuits—they contain all kinds of 
nonlinear interactions; semiconductor lasers provide power to numerous laser 
systems whose operation can destabilize easily with any optical feedback into the 
semiconductor "pump" laser. 

2. software engineering—refer to our discussion of Information Warfare, with 
feedback possible at unfathomable volumes and speeds. 

3. high performance computing—see Items 1 and 2. 

4. machine intelligence and robotics—require all sorts of control circuitry and 
feedback loops. 

5. simulation and modeling—chaotic dynamics are being recognized in numerical 
models we've used for twenty years; look for more details in the next chapter. 

6. photonics—laser and optical circuitry may be subject to Chaos at quantum and 
classical levels of dynamics. 

7. sensitive radar—often combines the instabilities of electronics, optics, and 
feedback. 

8. passive sensors—refer back to the night-light experiment! 

9. signal and image processing—fractals allow new advances in image compression. 
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10. signature control—stealth technology, e.g., wake reduction in fluids. 

11. weapon system environment—peek ahead to the next chapter's discussion of the 
nonlinear battlefield and fire ant warfare. 

12. data fusion—attractors and Lyapunov exponents can summarize new information 
for military decision makers. 

13. computational fluid dynamics—fluids tend to behave chaotically. 

14. air breathing propulsion—engines consume fluids and move through other fluids. 

15. pulsed power—power switching requires circuitry with fast feedback. 

16. hypervelocity projectiles and propulsion—both areas include guidance, control 
and other feedback systems. 

17. high energy density materials—can undergo chaotic phase transitions during 
manufacture. 

18. composite materials—same manufacturing issues as Item 17. 

19. superconductivity—superconductor arrays (Josephson junctions) are a classic 
source of Chaos. 

20. biotechnology—living organisms are full of fluids and electricity and ... Chaos. 

21. flexible manufacturing—may include automated processes prone to Chaos. 

Limitations of Chaos Theory 

It may seem difficult, after the previous section, to imagine any military system 

where we won't encounter Chaos. Let's do a brief reality check to indicate some systems 

that do not seem to benefit from the results of Chaos Theory. In general, Chaos will not 
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appear in slow systems, where events are infrequent, or where a great deal of friction 

dissipates energy and damps out disturbances. 

For instance, we shouldn't expect Chaos Theory to help us drive a jeep or shoot a 

single artillery piece. On the other hand, the theory may eventually guide our decisions 

about how to direct convoys of jeeps, or how to space the timing or position of many 

projectile firings. Similarly, Chaos Theory offers no advice on how to fire a pistol, but it 

may help us design new rapid-fire weapons. 

The theoretical Chaos results are seriously constrained by the need for large 

amounts of preliminary data. To make any analysis of time series, for instance, we can 

make reasonable comments based on as few as 100 data points, but the algorithms work 

best with about 1000 data points.42 Therefore, even if we are able to design reliable 

decision tools for battlefield use, if our models require input from 100 daily reports of 

enemy troop movements, we may be out of luck in a 30-day war. While I hold out some 

hope for the prospects of increasing our speed and volume of simulated battlefield 

information, the mechanisms for using such simulations for real-time combat decisions 

remain to be developed. 

You may encounter scenarios and systems with erratic behavior, where a source 

of Chaos is not immediately evident. In this event, you may need to examine different 

scales of behavior. For example, Chaos Theory may not help study the flight of a single 

bird, free to choose where and when to fly. However, there is evidence of Chaos in how 

groups of birds flock and travel together! 
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Implications 

The pervasiveness of chaotic dynamics in military systems forces us to be aware 

of sources of instability in our system designs. We need to develop capacities to protect 

our own systems from unwanted fluctuations, and to impose unwanted dynamics on 

enemy systems. However, the next chapter will also present ways we can constructively 

exploit chaotic dynamics, to allow new flexibility in control processes, fluid mixing, and 

vibration reduction. We must remain alert for new perspectives of old data that were 

previously dismissed as noise. Perhaps more important, the universal results of Chaos 

Theory open the door for new strategies—ideas we'll discuss in the chapter ahead. 
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FOUR 

How Can We Use the Results? 

Exploiting Chaos Theory 

One of the great surprises 
to emerge from studies of nonlinear dynamics 
has been the discovery that stable steady states 
are the exception rather than the rule. 

- Gottfried Mayer-Kress 

Introduction 

You should have some intuition, at this point, for the common features of Chaos. 

You should also be comfortable with the fact that an enormous number of systems exhibit 

chaotic dynamics; many of these systems are relevant to military decision making. But 

how can we use Chaos to make better decisions or design new strategies? Even if we 
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accept the idea that Chaos can be applied to strategic thinking, shouldn't we leave this 

high-tech brainstorming to the analysts? 

Absolutely not! As Gottfried Mayer-Kress points out, if we fail to learn the basic 

applications of Chaos Theory, our naivete could lead to unfortunate consequences: 

• the illusory belief that successful short-term management allows total control of a 
system; 

• difficulty in making a diagnosis from available short-term data; 

• application of inappropriate control mechanisms that can actually produce the 
opposite of the desired effect 45 

This chapter lays out practical results on how Chaos Theory influences a wide 

range of military affairs. Let's review what we've covered so far. In the introductory 

chapter, I suggested that Chaos provides us with new information, courses of action 

and expectations. The discussions in the first two chapters mainly focused on 

expectation: if we understand Chaos, then we are better able to interpret the behavior of 

systems we observe, and we have a greater appreciation for the kind of dynamics to 

expect in a system that can oscillate. Some of the previous examples foreshadowed the 

new information that Chaos results provide, and the new options available when we 

understand the consequences of the theory. Among many other things, Chaos Theory 

offers very specific dynamics and transitions to expect, tools to observe and assess, 

opportunities to prevent, induce, and control chaotic dynamics, even (and especially!) in 

systems where there is no hope for modeling.   The sections that follow consolidate 
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these relevant consequences, with specific suggestions on how to apply these results. As 

you read through, the structure of each section may suggest that each concept or 

technique operates independently, like an isolated item in a tool kit. However, be alert to 

see how the application of Chaos Theory unifies many of the previous results. 

This chapter begins with a review of some Chaos results that are consistent with 

past thought and with good common sense. The meat of this chapter, of course, is the 

discussion of the new tools and options available to decision makers because of the 

results of Chaos Theory. Then, an introduction to fractals begins a section on 

applications that take particular advantage of the fractal geometries that appear in many 

chaotic systems. Finally, we end with a discussion of other issues, including the 

difficulties posed by making decisions about systems that include human input and 

interactions. 

Common Concerns 

We should pause and consider the understandable concerns and objections of 

those who may be suspicious of "all this Chaos business." It is quite easy to try and 

dismiss Chaos as an impractical metaphor, especially since many authors present only the 

metaphors of Chaos. Some toss around the Chaos vocabulary so casually that they leave 

us no hope for practical applications of the results. Margaret Wheatley, for one, only 

offers Chaos as a metaphor, hiding behind the argument that"... there are no recipes or 

formulae, no checklists or advice that describe 'reality' [precisely]."46 While I certainly 
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agree that no formula can track individual trajectories in a sensitive chaotic system, 

especially with human choice involved, many patterns are evident, many means of 

observation and control are available, and the trends of chaotic dynamics are sufficiently 

common that we can and should expect specific classes of behaviors and transitions in 

chaotic systems. Unfortunately, even many well-written Chaos texts target a highly 

technical readership where the useful results are not adequately deciphered for a larger 

community of potential users. 

All the same, we already know that human activity is sensitive to small 

disturbances, that small decisions today can have drastic consequences next week, and 

that troops—like water drops—need rest between events. It's simply not obvious there's 

anything new in the Chaos field. Why is it worth everybody's time just to learn a new 

vocabulary to describe the same old thing we've been doing for decades, or in some 

cases, centuries? Moreover, suppose we agree that there is something new here. How 

can we use the Chaos results? How can Chaos help me prioritize my budget or defeat my 

enemy? 

Dr Peter Tarpgaard, a Naval War College professor in National Security Decision 

Making, offers a fine analogy to answer some of these concerns and to offer a glimpse of 

the insight that Chaos Theory brings to decision makers. To paraphrase, imagine what 

Galileo's contemporaries commented when they saw him depart for Pisa with a golf ball 

and a bowling ball in his duffel bag. "What's the use? You're gonna climb the Leaning 

Tower, and drop the things, and they're gonna fall. We know that already!  You're not 
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showing us anything new. Besides, even if it is new, how can we use it?" What he 

found was qualitative evidence that objects with different properties fall at the same rate. 

Now consider the tremendous advance in knowledge when Newton derived 

precise expressions for the force of gravity. Among other things, Newton's laws of 

motion identified specific behaviors to expect when various objects are subject to 

gravity's influence. By describing gravity's effects, Newton gave us the power to model 

them—if only approximately—and to assess their impact on various systems. In 

particular, we now know exactly how fast an object will fall, and we can figure out when 

it will land. With this knowledge, we can also predict and control certain systems. 

Chaos Theory brings comparable advances to decision makers. The good news: a 

number of researchers have developed techniques and tools that allow us to apply Chaos 

Theory in physical and human systems. The bad news: these efforts are very recent, and 

a great deal of thought and study remains to be done. This chapter represents my best 

effort to package my own results and those I have assembled thus far from available 

sources. Enormous research questions remain open; I outline some of these topics in the 

next chapters. 
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Something Old, Something New 

Some of the consequences of Chaos Theory were recognized long before Lorenz 

uncovered the influence of nonlinearity in fluid dynamics. This lends some credibility to 

the results; as Clausewitz tells us, we need to compare new theories with past results to 

ensure their consistency and relevance. I've highlighted some examples below which 

come from standard topics in the Naval War College curriculum. 

• Marine Corps Doctrine specifically discusses the advantage of getting "inside" your 

opponents' OODA (Observe-Orient-Decide-Act) loops in order to increase their 

unpredictability (or "chance" or "fog" depending on your perspective). Similarly, in 

the U.S. Army Manual FM 100-5: "... in the attack, initiative implies never allowing 

the enemy to recover from the initial shock of the attack."47 This general strategy 

follows naturally from our observation of dripping faucets: Chaos results when the 

system is not allowed to relax between events. 

• The US Marine Corps Manual FMFM-1 includes many references to the 

consequences of sensitivity to current states, and the unpredictability of plans and 

predictions: 

We have already concluded that war is inherently disorderly, and we 
cannot expect to shape its terms with any sort of precision. We must not 
become slaves to a plan.    Rather, we attempt to shape the general 
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conditions of war; we try to achieve a certain measure of ordered 
disorder. Examples include: 

[channeling] enemy movement in a desired direction, 
blocking or delaying enemy reinforcements so that we can fight a 

piecemealed enemy rather that a concentrated one, 
shaping enemy expectations through deception so that we can 

exploit those expectations,.... 
We should also try to shape events in such a way that allows us several 
options so that by the time the moment of encounter arrives we have not 
restricted ourselves to only one course of action. 

In a Naval War College lecture, Professor Michael Handel discussed the analysis of 

counterfactuals, alternative histories that might have occurred if key figures had made 

different choices. An important question: in a historical case study, how far can we 

carry our analysis of alternative strategies that were not actually pursued? His 

conclusion: the further ahead we consider, the less precision we should attempt to 

impose. In other words, the further we carry our counterfactual musings, the less 

reliable our analysis is.49 This is an expression of sensitivity to initial conditions, 

correctly applied to historical analysis. 

Consistent, At Least 

We can see, then, that some of the consequences of Chaos Theory do not present 

new findings for strategic thought. However, we can be content that these preliminary 

observations are consistent either with our "common" sense or with the conclusions of 

previous researchers and thinkers. 
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So WHAT'S NEW ??? 

The applications presented in this chapter concentrate on methods, results, tools 

and traits of dynamical systems that were not recognized, or even feasible, only thirty 

years ago. 

The fact that deceptively simple-looking functions and interactions can produce 

rich, complicated dynamics, constitutes a genuinely new insight. This insight grew from 

the work of biologists' simple population models like the logistic map that were analyzed 

in greater detail by mathematicians. As a result, we learned that complex dynamics and 

outcomes do not have to come from complex systems. Apparent randomness and 

distributions of behavior can be produced by very simple interactions and models. In 

particular, Edward Lorenz discovered that our difficulty in predicting weather (and many 

other chaotic systems) is not so much the resolution of the measurements as it is the 

vulnerability of the system itself to small perturbations. In fact, global weather is so 

sensitive, that even with a compact grid of satellites measuring atmospheric data at 1- 

kilometer increments, Prof Edward Teller estimates we could only improve our long- 

range weather forecasts from five days to a staggering 14 days! 

So don't fire your meteorologists or your analysts! To simply expect and 

recognize Chaos in so many real systems is progress enough. The best news is that we 

have so many tools available to further understand and control chaotic systems. Think 

back to the aircraft loss data in Figure 2.   The tools of Chaos Theory offer hope for 
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discerning the key processes that drive these erratic patterns. J.P. Crutchfield highlights 

the importance of nonlinearity in developing those tools: 

[The] problem of nonlinear modeling is: Have we discovered something in 
our data or have we projected the new-found structure onto it?. .. . The 
role of nonlinearity in all of this... is much more fundamental than 
simply providing an additional and more difficult exercise in building 
good models and formalizing what is seen. Rather it goes to the very 
heart of genuine discovery. 

Some amazing results discussed below include ways we can often quantify a 

system's sensitivity and give some estimate on how long predictions are valid. Only 

very recent advances in computers allow us to repeatedly measure quantities such as 

fractal dimensions, bifurcations, embeddings, phase spaces and attractors. The results of 

these measurements give us the information we need to apply the theoretical results. In 

this way, the tools of dynamical systems animate innumerable dynamics that have gone 

unobserved until now; decision makers who are aware of the tools available to them can 

52 better discern the behavior of military systems. 

HOW TO APPLY 

While the results of Chaos Theory offer us tremendous metaphors to improve our 

perspective of dynamics in military systems, the practical applications of Chaos go well 

beyond simple analogy. To highlight this point, you'll notice I pushed my discussion of 

Chaos metaphors to the end of this chapter.   The chapter focuses, instead, on specific 
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processes, examples, and brief cases with suggested insights and uses for the analytical 

tools presented earlier. As you consider the applications of these results in your own 

systems, remember that sometimes you may prefer chaotic dynamics; at other times you 

want periodicity or stable steady states. In other instances, you may simply want to 

influence the unpredictability in a system: increasing it in your adversary's system, 

decreasing it in your own. 

Feedback 

The results of Chaos Theory help us to: 

• know what transitions to expect when we add feedback to a system; 

• suggest ways to adjust feedback; 

• appreciate the wide range of dynamics generated by feedback in real 
systems; 

There's nothing new about a call for awareness of feedback in physical and social 

systems. Many commentators, for instance, alert us to the impact of real-time media 

reporting combat events faster than DOD decision loops can operate. You may also 

consider the feedback imposed on your organization by requirements for meetings and 

reports. How often do you "pulse" your organization? Yearly, monthly, weekly, daily? 

Do you request periodic feedback, or do you allow it to filter up at will? Is the feedback 
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in your organization scheduled, formatted, free-flowing, "open door", a mixture of these? 

How intense is this occasional "perturbation" to your system? 

These are familiar issues for managers and commanders, but a grasp of chaotic 

dynamics leads us to answer these questions with other equally important questions. 

What mixture of structured feedback and freeform feedback works best in your system? 

What would happen if you increased or decreased the frequency of your meetings and 

reports? What transitions in system performance should you expect? Is it likely, for 

instance, that too many meetings of an office staff could generate instabilities in your 

system? Or, in a crisis situation—theater warfare, rescue, natural disaster—what 

characteristics of the "system" make it more appropriate to assess the system every day, 

or every hour? This idea was explored during a series of Naval War College war games. 

In these games, one out of every three messages was arbitrarily withheld from the 

commanders, without their knowledge.    As a result, observers noted better overall 

53 
performance of the students' command and control processes. 

Your awareness of your need for, and the sensitivity of, feedback in your system 

will make you more alert to the possible consequences of altering the feedback. The 

biggest benefit of Chaos Theory here seems to be transitions we should expect as we 

alter various parameters of system feedback. 

For example, if you observe that too many meetings or reports cause undue stress 

on your organization, you might identify several obvious parameters under your control: 

frequency of feedback, length of reports, amount of detail or structure required in your 

reports, length of meetings, number of people involved in your meetings, etc.   Some 

experience with dynamical systems suggests that small changes, or careful control, of 
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these parameters may suffice to stabilize some aspect of your system's performance. One 

new expectation we learn from chaotic systems is that small changes in control 

parameters can lead to disproportionate changes in behavior. Again, the idea of 

manipulating meeting schedules and reporting cycles is not new. However, the 

expectations for ranges of behavior and transitions between behaviors are new. 

As a hypothetical illustration, suppose you observe changes in an adversary's 

behavior based on how often your surface vessels patrol near his territorial waters. Let's 

assume that your adversary bases no forces along the coast when you leave him alone, but 

he sets up temporary defenses when you make some show of force—say, an open water 

"Forward Patrol" exercise—once a year. Assume, further, that when you double the 

frequency of your exercises to twice a year, you note a substantial change in your 

adversary's behavior. Maybe he establishes permanent coastal defenses, or increases 

diplomatic and political pressures against you. You have cut the time difference between 

significant events (in this case, military exercises) in half and you observe a transition in 

the system. Now, it's an awful idea to pull Feigenbaum's constant out of our holster, fire 

it at this scenario, and predict that the next transition in the adversary's behavior will 

come if we decrease our time interval by only (6 months)/(4.67), or 38.5 days. On the 

other hand, the common features of chaotic systems suggest that—even though we have 

no model for the system—we should at least be alert that the next transition in this 

system could come if we increase the frequency of our exercises by only a small amount, 

or it could come if we simply maintain the current semi-annual exercise schedule longer 

than the patience of the adversary can endure. 
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There may be few cases where we can afford the risk of testing such a hypothesis 

on a real adversary, though force-on-force dynamics like these could be simulated or 

gamed to reach significant, practical conclusions. You might consider, for instance, 

whether Saddam Hussein was playing a game just like this, in 1994, when he posted 

substantial forces along his border with Kuwait, while the United States military was 

busy with events in Haiti. Was he determining the increments of force size and timing 

that are necessary to provoke US military responses? I would guess that Hussein is not 

applying Chaos Theory to his strategic decisions, but we might analyze and game our 

own dynamics to see what increments of Iraqi force disposition will compel us to react. 

My hypothesis is that an understanding of chaotic dynamics ought to help us understand 

and control our response, selected from a flexible range of options, because knowledge of 

Chaos helps us understand the likely transitions when we change our system's control 

parameters. 

Any one of the following additional questions would require a complete study in 

itself. However, I offer these ideas to stimulate your thought about the role of feedback, 

and transitions between behaviors, in systems that interest you: 

• The increasing availability of real-time information to decision makers amplifies our 

concerns about information overload. How much detail does a leader require? How 

often? How much intelligence data does it take to saturate commanders and diminish 

their capacity for making effective decisions? What are the best ways to organize and 

channel a literal flood of information?  The common transitions of chaotic systems 
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suggest that we might learn to control the flood by studying the effects of 

incremental changes in key parameters such as: volume of information, frequency of 

reports, number of sources involved in generating the data, and time allotted for 

decision making. Understanding the transitions from reasonable decision making to 

ineffective performance may help us tailor our intelligence fusion systems for the 

benefit of our commanders. 

• The relative timing of an incursion on an adversary's decision cycle may be more 

important than the magnitude of the interruption. Many successful strategies hinge on 

"getting inside the decision cycle" of your enemy. The idea, of course, is to take 

some action, and then move with such agility as to make a subsequent move before 

your opponent has time to Orient-Observe-Decide-and-Act in response to your first 

action. Chaos Theory offers an important new insight to this basic strategy: we 

should expect ranges of different responses depending on how "tightly" we approach 

the duration of an OODA loop. That is, if we want to outpace an enemy who operates 

on a 24-hour decision cycle, we may find we have the same disrupting effect on his 

operations if we revise our Air Tasking Order every 18 hours as we would if we 

revise on a 12-hour or 6-hour cycle. We can then choose one planning option over 

another in order to meet other objectives for speed, economy of force, efficiency, 

increased monitoring of combat effectiveness, or resupply requirements. The idea is 

that we should expect ranges of control parameter values where the system behavior 

is relatively consistent; we should be prepared to note parameter ranges where small 
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adjustments translate into drastic changes in system response. Notice, this 

phenomenon is not sensitivity to initial conditions. Rather, it relates the sensitivity of 

the system structure and changes in parameters, or adjustments to the control knobs, 

if you will. 

One final application to consider, in another area of our decision cycle: coordinating 

our interactions with the news media during crises. We may find that we can adjust 

the time intervals of wartime press conferences, for example, to control the effects of 

real-time media feedback in our own decision loops, without having to resort to 

appeals for outright censure. Periodic feedback, carefully timed, could contribute to 

desired behaviors in domestic systems, like channels of public support, or adversarial 

systems who tune in to American television for intelligence updates. 

Predictability 

How does Chaos Theory explain, illuminate, reduce or increase 

predictability? Previous sections of this essay referred to the unpredictable nature of 

chaotic systems: the irregular patterns in dripping faucets, rocking boats, flickering 

lasers. Here, we'll consider the results that help us understand a chaotic system's erratic 

behavior. While the paths of individual chaotic trajectories can never be accurately 

predicted for very long, we'll see that knowledge of a system's attractors offers practical 

information about the long-term trends in system behavior.  This section on predictions 
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begins with a summary of powerful results that also allow us to predict the short-term 

behavior of chaotic systems, even with no model! Then, this section on predictability 

concludes with an explanation of the usefulness of attractors for assessing long-term 

system trends. 

Time Series Predictions. We record—and sometimes analyze—unfathomable quantities 

of data at regular time intervals: daily closing levels of the Dow Jones Industrials; 

monthly inventory reports; annual defense expenditures. A list of measured data like this, 

along with some index of its time intervals, is called a time series. Simply visualize a 

long printout of numbers, organized in a table or graph, sequentially in time. 

Now, if part of the list is missing, we might interpolate by various means to 

attempt to estimate the information we need. For instance, if we know a country's tank 

production was 30 vehicles three years ago, and 32 vehicles last year, we might guess that 

the production two years ago was around 30 tanks or so. To make this estimate we 

should first: 

• feel confident in the data we have on hand; 

• have some idea that industrial activity over the last few years was fairly 
constant; 

• have some reason to believe the production cycle is annual and not biannual; 

• perhaps, have access to a model that approximates this nation's production 
habits. 
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More often than not, though, we are concerned with forecasting issues, such as, 

how many tanks will that country produce next year? For such questions we must 

extrapolate and make some future prediction based on previous behavior. This is a 

perilous activity for any analyst, because the assumptions on which any models are made 

remain valid only within the time span of the original set of data. At any point in the 

future, all those assumptions may be useless. 

Unfortunately, predictions of behaviors and probabilities are an essential activity 

for any military decision maker; we have to muddle through decisions on budgets, 

policies, strategies and operations with the best available information. Amazingly, 

however, the results of Chaos Theory provide a powerful new means to predict the 

short-term behavior of erratic time series that we would otherwise dismiss as 

completely random behavior! Very briefly, here is the basic idea. If you had a time 

series with an obvious pattern, 25725725 7 ... , you could probably predict the 

next entry in the list with some confidence. On the other hand, if you had a time series 

with erratic fluctuations, as in Figure 15, how could you know if there were discernible 

patterns to project into the future? Through the embedding process, Chaos analysts can 

uncover patterns and subpatterns that are not apparent to the naked eye, and use that 

information to project the near-term behavior of irregular dynamics like those depicted 

here. In Figure 15, for instance, you can see some evidence of behavior that approaches 

periodic behavior for a few cycles; embedding methods identify the places in phase space 

where these dynamics are most likely.    This technique has been applied to several 

54 
complex fluids and thermal systems with tremendous success. 
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nearly Period-1 nearly Pcriod-2 

Figure 15.   Chaotic Time Series for the Logistic Map What Comes Next? 

The embedding technique, of course, does not work for all time series, and the 

predictions may only hold for a few cycles past the given data set. However, modern 

decision makers need to be aware of this tool for two crucial reasons. First—let's be 

honest—without any hope from Chaos Theory, you and I wouldn't dream of trying to 

predict a single step of the wild dynamics illustrated Figure 15. The theoretical results 

give us hope that we can now make reasonable projections in systems we previously 

dismissed as being beyond analysis. However, Figure 16 includes samples of the kind of 

predictions possible with embedding methods. Given 1000 data points from which to 

"learn" the system's dynamics, the algorithm used here was able to predict fairly erratic 

fluctuations for as many as 200 additional time steps! 
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In addition, embedding methods include estimates of the error induced by 

extrapolating the data, giving the decision maker an idea of how long the projections may 

be useful! For detailed presentations of this technique, see, for instance, the notes from a 

1992 summer workshop at the Sante Fe Institute.56 Additional explanations also appear 

en 

in a recent article by M. Casdagli, "Nonlinear Forecasting, Chaos and Statistics." Both 

references outline the algorithms for near-term and global statistical predictions of 

chaotic time series. Still other researchers have successfully applied similar methods to 

enhance short-term predictions by separating background noise from chaotic signals; the 

list of distinguished authors includes Ott, Sauer and Yorke,58 J.D. Farmer,59 and William 

Taylor of the RAND Corporation. 

Attractors and Trends. I can not overemphasize: the sensitive character of chaotic 

dynamics denies us any hope of predicting the long-term behavior of a system, regardless 

of how accurately we can measure its current state. On the other hand, any knowledge of 

a system's attractors gives us plenty of useful information to predict long-term trends in 

the system. Just look outside. Without the benefit of a meteorology degree you can 

probably tell whether or not you'll need an umbrella to cross the street. You may even 

have enough information to make reasonable short-term decisions—like if you should go 

to the park this afternoon—even though the long-term weather remains unpredictable. 

On a larger scale, you can tell the difference in how to pack for a vacation in Hawaii, 

versus a trip to Moscow, without any current weather information at all.     And don't 
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forget how fortunate we are that the weather behaves chaotically and not randomly. 

Otherwise, we'd have no hope of making even short-term forecasts! 

These simple examples illustrate how we make decisions based on some 

knowledge of system trends. The attractors of a dynamical system provide precisely that 

information. Whether we construct an attractor from measured data, or from extensive 

simulations, a system's attractor can illustrate trends that are not as intuitive as the 

simple weather examples above. Moreover, a well-drawn picture of an attractor vividly 

displays the relative amount of time the system spends in certain regions of its phase 

space. Now, up to this point, this kind of information was available even before the 

advent of Chaos Theory. 

However, Chaos Theory brings us several new results when we are confident an 

erratic system is truly chaotic. First of all, by simply recognizing an attractor, we regain 

some hope that we can understand and manipulate our system. After all, the attractor 

gives form and structure to behavior we used to dismiss as random. J.M. Thompson 

points out in his Nonlinear Dynamics text: 

analysts and experimentalists should be vitally aware that such apparently 
random non-periodic outputs may be the correct answer, and should not be 
attributed to bad technique and assigned to the wastepaper basket, as has 
undoubtedly happened in the past. They should familiarize themselves with 
the techniques presented here for positively identifying a genuine chaotic 
attractor. 

Many practical pieces of information can be derived from our knowledge of a 

system's attractor. First of all, the relative amount of time the system spends on various 

portions of the attractor constitutes a probability distribution; an attractor could provide 
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key probability information to a military decision maker in many scenarios. Secondly, if 

we find an attractor for a system, then even if we keep the system parameters constant, 

any disturbances to the system's current state will still render its particular evolution 

unpredictable (envision a tire-swing, or a vibrating space station). However, any 

transient behaviors must die out and the global trends of system behavior must be 

unchanged. After all, that's what the attractor describes: regions of phase space that 

attract system dynamics. Third, we have some hope that we can predict or recognize the 

basins of attraction in a given system.63 If we can prepare a battlefield or a negotiation 

scenario to our liking, we have some hope we can set up its initial state so the system 

proceeds under its own dynamics to the trends of the attractor we desire. 

Visualization of attractors also makes system transitions more apparent as we 

change control parameters. Recall, for instance, the return maps we sketched for the 

dripping faucet (Figure 6). It's important to notice that, when the period-2 behavior first 

occurs, the pair of points in the attractor "break off from where the single point used to 

be. A bifurcation occurs here; we find that the periods of these initial period-2 cycles 

are very close to the previous period-1 time intervals. Thus, by tracking the attractors 

for various parameter settings, we not only observe the individual dynamics, but also 

discern additional information about the transitions between those behaviors. 

Unfortunately, most real dynamical systems are not simple enough to collapse 

onto a single attractor in phase space.   How can we understand and exploit multiple 

attractors in a single system? Here's an analogy: when my '85 Chevette starts up in the 

morning, it warms up at a relatively fast idle speed.  This is one periodic (non-chaotic) 

attractor for the operation of my car engine with some fixed set of parameters.   A few 

99 



minutes later, when I tap accelerator to release the choke, the engine idles, but much more 

slowly. The system output has fallen onto a second periodic attractor. The system is the 

same, but an external perturbation "bumped" the system to a new, bounded, collection of 

states. 

My friend CDR Millward now asks, is there any chance of exploiting the 

existence and proximity of two attractors in a system? Say that our system of interest is 

the disposition of an enemy force, and suppose the current set of control parameters 

allows that system to evolve along either of two attractors, one of which is more to our 

own advantage. By examining the control parameters available to us, is it possible we 

manipulate the transitions between these attractors, joining them, breaking them, 

building or destroying links between them? These questions may, at first glance, appear 

too metaphorical, but as our facility with models and intelligence data increases, we may 

find that the answers to these questions bring extremely practical strategies to the table. 

Here's a brief summary of the practical guidance Chaos Theory offers for system 

predictability: 

1. Techniques   like   embedding   make   short-term   prediction   possible   in 
chaotic systems. 

2. These techniques quantify the short-term reliability of a given forecast. 

3. Attractors describe the long-term recurrent behavior of a system. 

4. The   relative   time   spent   in   various   states   on   the   attractor   defines 
useful probabilities. 
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5. Images of attractors give indicators of the features of system transitions. 

6. The presence of multiple attractors may provide us new ideas for strategic 
options. 

Control of Chaos 

In this section, we study one of the most powerful consequences of Chaos Theory: 

we can take a chaotic system—whose behavior we used to dismiss as random—and drive 

out the Chaos to impose stability! Moreover, this is often possible without the aid of 

any underlying model! This capability has no counterpart in nonchaotic systems. You 

may be amazed to see the numerous real systems where researchers successfully 

controlled the behavior of chaotic systems. 

To lend some structure to the list of examples that follows, you should look for 

three basic approaches that have been demonstrated for Chaos control: 

1. regular periodic disturbances; 

2. proportional inputs, based on real-time feedback; 

3. trajectory "steering," based on models or approximations to the dynamics on an 
attractor. 

We already tried the first control technique when we induced periodic output in 

the chaotic dripping faucet by tapping a rhythm on the spout. In some regards, this 

technique is consistent with standard results of resonance theory that describe how 

external vibrations can excite certain natural frequencies in the system.  However, in a 
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chaotic system we are guaranteed to find that infinitely many different periodic 

behaviors are possible, not just combinations of the natural modes of system. 

The second control method, on the other hand, requires real-time measurements of 

the system's output in order to determine how far to adjust the selected control parameter. 

This is a generalization of the way you would balance a long stick on the palm of your 

hand: you move your hand just enough, based on how you feel the stick leaning, and you 

manage to keep the stick upright. This method has the disadvantage of requiring a 

reliable feedback-driven control loop. The obvious advantage, though, is that we achieve 

stable output intentionally; not in the hit-and-miss fashion that sometimes characterizes 

control experiments of the first type. 

The third control method was recently developed at the Massachusetts Institute of 

Technology (MIT). It requires extensive calculations in order to develop approximations 

to the dynamics on a system's attractor. It has not been reported in any other experiments 

yet, but I include it to provide a peek at new results to come. 

These three techniques are the most practical means available to control systems that 

would otherwise exhibit Chaos; the methods allow us to impose different types of 

stability, depending on the application. For example, the stability you generate may be a 

stable steady state (like balancing the stick), but it may also be a stable periodic state 

(often desirable in laser systems). It's also possible to eliminate the possibility of Chaos 

entirely by modifying the system in some way (see the discussion below on process). 

However, in this section, we'll look at Chaos control, ways to lock on to one of the 

infinitely many unstable periodic trajectories densely woven on an attractor. 

The key observation common to all three techniques is that a chaotic attractor 

typically has, kneaded into it, an infinite number of unstable periodic orbits. Here are the 

main benefits we derive from Chaos control: 
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• 

We can convert Chaos into one of many possible attracting periodic motions 
by making only small perturbations of an available system parameter. 

The method uses information from previous system dynamics, so it can be 
applied to experimental [real-world] situations in which no model is 
available for the system. 

Control becomes possible where otherwise large and costly alterations to 
system may be unacceptable or impossible. 

Several good references describe the complete analytical details needed to 

implement these control algorithms: 

• Ott, Grebogi and Yorke perfected the technique that uses real-time feedback; current 

publications refer to this method with the authors' initials, the "OGY method." 

Since their initial report, they (and many others!) have applied the OGY method to 

numerous systems, from classic chaotic systems like Lorenz' weather model and the 

logistic map, to physical systems such as thermal convection loops, cardiac rhythms 

and lasers. For example, Figure 17 shows the stable steady state imposed on the 

logistic map, compared to its usual, irregular dynamics. The OGY team has also 

applied this method of Chaos control to reduce and filter noise that is present in 

measured data. 

• The other control technique which is computation-intensive was developed by 

Elizabeth Bradley at MIT.68 Like the OGY Method, her approach actively exploits 

chaotic behavior to accomplish otherwise impossible control tasks. Bradley's 

method, though, is more like a numerical interpolation. She successfully 

demonstrated her method on the Lorenz equations. Though it is not yet fully 

automated, and requires a tremendous amount of data or a complete model, the 

technique shows great promise. 
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Figure 17. The Logistic Map, Stabilized with Chaos Control. 
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Applications of Chaos Control 

Thin Metal Strip. Early applications of the OGY method stabilized vibrations in a thin 

metal strip. Based on real-time measurements of the strip's position, the apparatus 

automatically adjusts the frequency and amplitude of input vibrations. This simple 

experiment confirmed validity of Chaos control theory, stabilizing period-1 and period-2 

behavior, and switching between the two at will. These early successes highlighted the 

important consequences of Chaos control: 
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• no model was needed, 

• minimal computations were required, 

• parameter adjustments were quite small, 

• different periodic behaviors were stabilized for the same system, 
70 

• control was possible even with feedback based on imprecise measurements. 

Most important, this method is clearly not restricted to idealized laboratory systems!!! 

Engine Vibrations. Henry Abarbanel summarizes the results of several vibration control 

studies for beams, railroads, and automobiles.71 He describes the use of automated 

software to discover the domains of regular and irregular motions in beams driven by 

external vibrations. This information is important to the study of lateral railroad 

vibration, known as hunting, which deforms and destroys railroad beds. The hunting 

phenomenon—nrecognized for decades, but never traced to its source—was shown to arise 

through the same period doubling transitions we saw in our dripping faucet and the 

logistic map! Understanding the source of these oscillations should lead to ways of 

mitigating the vibrations, saving tremendous costs in safety and maintenance. In another 

case, a vibration absorber for rotating machinery (S.W. Shaw, University of Michigan) 

successfully removed unwanted oscillations by prescribing paths for counterrotating 

dynamical elements. The induced motions precisely cancel vibrations in helicopter and 

automotive machinery. You can expect these nonlinear absorbers to appear soon in 

products of the Ford motor company, who sponsored the work. 

Helicopter Vibrations. Chaos Theory was recently applied, for the first time, to study 

flight test data from OH-6A Higher Harmonic Control (HHC) test aircraft. The HHC is 

an.active control system used to suppress helicopter vibrations.  Most vibrations in the 
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system are periodic, but evidence of Chaos was found. The presence of Chaos limits the 

ability to predict and control vibrations using conventional, active control systems, but, 

here, control techniques take advantage of the chaotic dynamics. Like the simple metal 

strip experiment, this approach uses only experimental data—no models!! By extracting 

information from time series, we can find the limits of possible vibration reduction, 

determine the best control mode for the controlling system, and get vibrations under 

control using only a few minutes of flight data. These powerful analytical results reduced 

flight test requirements for the HHC; the same methods can be applied to other vibration 

72 control systems. 

Mixing. A South Korean company builds washing machines that reportedly exploit 

Chaos Theory to produce irregular oscillations in the water, leading to cleaner, less 

tangled clothes.73 Whether or not we believe this particular claim, we ought to consider 

military systems where effective mixing might be enhanced by Chaos control, for 

example, in the combustion of fuel vapors in various engines. 

By now, you should notice common features in the dynamics of many different 

systems, so you shouldn't be surprised to see comparable results in lasers.... 

Flickering Laser. In a low-power laser at the Georgia Institute of Technology, Prof Raj 

Roy controlled the chaotic output of a laser by manipulating the laser's power source. 

Very slight, but periodic, modulations of the input power forced the laser into similar 

periodicity.74 In this case, Chaos control was possible without the use of feedback. 

While the laser output was not driven to any specific target behavior, repeatable 
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transitions were observed, from Chaos to periodicity, when Roy modulated a single 

control parameter. 

Chaos control also finds a number of applications in circuits and signals.... 

Ciphers. In cryptography, as well as in many simulation applications, we need to 

produce large lists of pseudorandom numbers, quickly and with specific statistical 

features. Chaotic dynamical systems appear to offer an interesting alternative to creating 

number lists like these, though sometimes more work is necessary. Unfortunately, the 

same embedding techniques that allow us to make short-term predictions of chaotic 

behavior also limit the use of chaotic systems for generating random-looking sequences. 

However, Chaos has other applications for secure communications  

Synchronized Circuits. Even the simplest circuits can exhibit sensitive, unpredictable 

long-term chaotic behavior. However, with the correct amount of feedback, two different 

circuits can be synchronized to output identical chaotic signals. This extraordinary 

result could prove useful for securing communications by synchronizing chaotic 

transmitters and receivers. 

Taming Chaotic Circuits. Elizabeth Bradley, at MIT, has completed software that takes 

a differential equation, a control parameter, and a target point in phase space, and 

approximates the system dynamics in order to drive a trajectory to a desired target 

point.77 While computationally intensive, her approach has had good success controlling 

the Chaos in nonlinear electrical circuits. This technique takes information about 

dynamics on the attractor and translates that information into approximate dynamics that 

allow control of individual trajectories. As a result, this technique provides a more 

global view of control processes. 
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Human systems? I have not yet seen Chaos control knowingly attempted on social 

systems, but consider, for instance, the options available for controlling the periodic 

dissemination of information to decision makers, both friendly and adversary. On the 

operational and tactical scales, we can envision many ways to apply periodic 

perturbations to a combat environment through action, inaction, deception, and 

information control. From a more strategic perspective, consider how regular 

negotiations and diplomatic overtures can tend to stabilize international 

relations—measures whose absence can allow relations to degenerate unpredictably. 

Depending on how you define such a system, you might observe truly chaotic dynamics 

and new opportunities to control those dynamics. Of course, I temper my optimism by 

emphasizing that active human participants can adapt unpredictably to their 

environments. However, a discussion follows shortly on the evidence of Chaos in human 

systems, offering some hope for applications. 

Remember the big idea: 

IF, a system is known to be (potentially) chaotic, 

THEN its attractor must contain an infinite number of unstable periodic trajectories. 

The presence of all those densely packed periodicities makes Chaos control possible. 

There are further implications for system design, since it's possible not only to modify a 

chaotic system very efficiently, with small control inputs, but also to choose from a 

range of desired stable behaviors. Therefore, novel system designs are possible: we 

may be able to design a single system to perform in several dissimilar modes—like a 

guided weapon with several selectable detonation schemes, or a communications node 
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with diverse options for information flow control. Current designs of systems like these 

often require us to build parallel components, or entire duplicate systems, in order to have 

this kind of flexibility. However, knowing that Chaos is controllable, we can now 

consider new system designs with Chaos built in, so that various stable behaviors can be 

elicited from the exact same system through small, efficient perturbations of a few control 

78 parameters! 

Chaos and Models 

Why bother with applying Chaos to modeling? Some of the following concerns 

are common to any debate about the utility of modeling: 

•    To increase the doctrine's emphasis on the human aspects of war, Air Force Manual 
(AFM) 1-1 argues in detail that war must not be treated like an engineering project 

79 

There will always be trade-offs between the detail you'd like in the model and the 
detail you really need. Gleick summarizes nicely: "Only the most naive scientist 
believes that the perfect model is the one that perfectly represents reality. Such a 
model would have the same drawbacks as a map as large and detailed as the city it 
represents, a map depicting every park, every street, every building, every tree, every 
pothole, every inhabitant, and every map. . . . Mapmakers highlight such features as 
their clients choose." 

Sometimes, even when good models are available, initial states can not be known 
(regardless of considerations of precision). For example, what initial conditions 
should be assumed for a complex model of the atmosphere, or an oilrig at sea in a 
developing storm? . . . How can we hope to explore the responses from all possible 
starts?" 
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Sensitivity to Initial Conditions (SIC), of course, brings into question whether 

there is any utility at all in trying to run a computer model of a chaotic system. Why 

bother, if we know that any initial condition we start with must be an approximation of 

reality, and that SIC will render that error exponentially influential on our results as we 

move forward in time? Wheatley, among others, maintains a grim outlook on the whole 

modeling business in the face of SIC.82 Jim Yorke, however, has proven that even 

though a numerical chaotic trajectory will never be exactly the trajectory we want, it will 
83 

be arbitrarily close to some real trajectory actually exhibited by the model itself. 

Here are a few more of the many reasons we should struggle to understand the 

role of Chaos in modeling and simulation: 

• Practical Dimensions:   The calculation of a time series' fractal dimensions is a 
means of assessing the number of effective independent variables determining the 

•       84 long-term behavior of a motion. 

Counterintuitive Outcomes Prevail: Simple computer models can be used to study 
general trends and counterintuitive consequences of decisions that otherwise appear to 
be good solutions. The results of even simple models will broaden our perspective of 

85 
what can occur, as much as what is likely to occur. 

Attractors Depict Trends: Chaos results can help validate the behavior of models 
whose output appears erratic. When we can't match the individual time series, we 
can often match the distribution of behavior on the entire attractor. 

Chaos in the Simplest Models. Even a brief survey of recent military models will reveal 

the importance of expecting Chaos in models and simulation. Ralph Abraham, for 

instance, gives a detailed analysis of what happens in his model of opinion formation. 

His numerical exploration is a good demonstration of the process of wringing out a 
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model. Chaos appears as he models the interaction of two hostile nations responding to 

the relative political influence of various social subgroups. Other researchers at Oak 

Ridge National Laboratory have demonstrated a range of dynamical behavior, including 

87 
Chaos, in a unique, competitive combat model derived from differential equations. 

Recent RAND research has uncovered certain classes of combat models that 

behave much like chaotic pendula. The authors discovered chaotic behavior in the 

outcomes of a very simple computerized combat model. Preliminary results offer ideas to 
go 

better understand nonintuitive results and to improve the behavior of combat models. 

For example, war game scenarios often produce situations where an added capability to 

one side leads to a less-favorable result for that side. Results like these have often been 

dismissed as coding errors. The correct insight, of course, is that non-monotonic 

behavior is caused by nonlinear interactions in the model. In the simple RAND model, 

reinforcement decisions were based on the state of the battle, and the resulting 

nonlinearities led to chaotic behavior in the system's output. The RAND team drew 

some interesting conclusions from their simulations: 

While models may not be predictive of outcomes, they are useful for 
understanding changes of outcomes based on incremental adjustments to 
control parameters. 

Scripting the addition of battlefield reinforcements (i.e., basing their input on 
time only, not on the state of the battle) eliminated chaotic behavior. This 
may not be a realistic combat option, but it's valuable information regarding 
the battle's dynamics. 

•    The authors were able to identify the input parameters figuring most 
importantly in the behavior of the non-monotonicities: in this case, the size of 
the reinforcement blocks and the total number of reinforcements available to 
each side. 
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Lyapunov exponents were useful to evaluate the model's sensitivity to 
perturbation. 

In general, the RAND report concludes, "for an important class of realistic combat 

phenomena—decisions based on the state of the battle—we have shown that modeling 

this behavior can introduce nonlinearities that lead to chaotic behavior in the dynamics of 

89 
computerized combat models." 

Dockery and Woodcock, in their detailed book, The Military Landscape, provide 

an exceptionally thorough analysis of several models and their consequences, viewed 

through the lenses of catastrophe theory and Chaos. New perspectives of combat 

dynamics and international competition arise through extensive discussions of strategy, 

posturing, and negotiation scenarios. They uncover chaotic dynamics in classic 

Lanchester equations for battlefield combat with reinforcements. They also demonstrate 
90 

the use of many Chaos tools, such as Lyapunov exponents, fractals, and embedding. 

Dockery and Woodcock appeal to early models of population 

dynamics—predator-prey models—to model interactions between military and insurgent 

forces. The predator-prey problem is a classic demonstration of chaotic dynamics; the 

authors use common features of this model to simulate the recruitment, disaffection and 

tactical control of insurgents. The analogy goes a long way and eventually leads to 

interesting strategic and tactical conclusions, illustrating: 

• conditions that tend to result in periodic oscillation of insurgent force sizes; 

• effects of a limited pool of individuals available for recruitment; 

• various conditions that lead to steady state, sustained stable oscillations, and 
chaotic fluctuations in force sizes; 
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•   the extreme sensitivity of simulated force strengths to small changes in the 
rates of recruitment, disaffection and combat attrition. 

In one of the many in-depth cases presented in The Military Landscape, patterns 

of dynamics in the simulation suggest candidate strategies to counter the strengths of 

insurgent forces. The model is admittedly crude and operates in isolation since it can not 

account for the adaptability of human actors. However, the model does point to some 

non-intuitive strategies worth considering. For example, cyclic oscillations in the relative 

strengths of national and insurgent forces can result in recurring periods where the 

government forces are weak while the insurgents are at their peak strength (Figure 18). If 

the government finds itself at this relative disadvantage, and adds too many additional 

resources to strengthen its own forces, the model indicates that the cyclic behavior tends 

to become unstable (due to added opportunities for disaffected troops to join the insurgent 

camps) and paradoxically weakens the government's position. Instead, the chaotic 

model's behavior suggests carrying out moderately low levels of military or security 

activity to contain the insurgents at their peak strength, and await the weak point in 

their cycle before attempting all-out attacks to destroy the insurgents' forces 

completely. 
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Figure 18. Periodic Changes in Force Levels in Two-Force Simulation. 
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Process 

Since many approaches to Chaos Theory remain uncharted, we often find, in 

reports of experiments as well as in analyses, that the processes followed are as 

instructional as the results. The laser system I studied at Georgia Tech with Prof Raj Roy 

is a good example.93 We started with a low-power laser whose output intensity fluctuated 

irregularly when we inserted a particular optical crystal into the cavity. The crystal 

converts a portion of the available infrared light into a visible green beam which is useful 
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for many practical applications. Even though a previous set of equations described some 

of the laser's operation, no one had yet discovered the source of the fluctuations. 

Alternating between output from numerical models and the real laser, we modified the 

model, using reasonable basic physics, until our numerical results displayed Chaos. As a 

result, we identified the specific source of chaos, and we were able to eliminate the 

chaotic fluctuations. This is one approach you might consider for analyzing a system if 

your system exhibits Chaos, but the model you're working with does not. 

If you find your model behaves chaotically, but the real system doesn't, you have 

a few options. You may, of course, simply have fundamental mistakes in your model. 

However, a more subtle possibility is that you may simply need to reduce one of your 

parameter values (i.e., decrease the "energy" in the model) until the model matches 

reality. Option three: if you're confident in the model, be alert for conditions when the 

real system might have different parameters. EXPECT CHAOS! 

If both the system and its model show Chaos, you should (at least) compare 

attractors, the distributions of the measurable output, like the histogram we drew in 

Chapter Two. Are the bounds on the attractors comparable? Do the densities of points 

on the attractors correspond? Once you gain confidence in the model, try to draw explicit 

connections from model parameters to quantities you can measure in the system. This 

is how to get control of the Chaos in your system. 

These approaches have many potential applications, such as generating 

distributions for use in war-gaming models. If we can replace random algorithms in war 

game models, with simple chaotic equations that produce comparable distributions, we 

should find clues leading to the parameters that play the greatest role in the dynamics of 

given scenarios. 
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Exploit Chaos for Strategies and Decisions 

What's new about the application of Chaos results to strategic thinking? In 

general, our awareness of the new possibilities of how systems can behave brings us 

definite advantages. Sometimes we will want Chaos. Perhaps an adversary's system 

will be easier to defeat if it is somehow destabilized. Cryptologists may prefer chaotic 

dynamics to secure their communications. On the other hand, many systems function 

better in stable, periodic conditions: signal transmissions, long-range laser sensors, and 

regular, predictable international relations. Fortunately, Chaos Theory also teaches us 

new ways to assure system stability through careful control of feedback. 

Alan Saperstein pinpoints several new ideas that Chaos Theory brings to the 

strategic planner: 

• 

• 

• 

Many previous attempts to analyze international relations included notions of 
stability and instability that are not new in the Chaos results. However, 
previous models do not account for or produce extreme sensitivity to small 
changes in input or model parameters. 

Models have proven to be very useful for identifying trends, transitions, and 
parameter ranges where stability or instability is prevalent. 

It follows that, if incomplete models of international conflict show instability 
in given regions of parameter space, then more complete, "realistic" models 
are also likely to be unstable in larger regions of the parameter space, i.e., 
harder to stabilize. 

The converse is not true: if a given model, representing a system, is stable, 
then a more complex, more realistic model of the same system may still be 
unstable. 
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The ideas in this section overlap somewhat with the previous sections on Chaos 

applications. The focus, though, is to assemble specific insights, options and techniques 

available to military decision makers and strategic planners. The examples proceed from 

specific results to general approaches. Look for connections among the many efforts to 

apply Chaos Theory to military activities. 

Decision Making Tools. Here is a concise summary of analysis tools, developed in the 

study of chaotic dynamics, available to military decision makers. These tools have 

surfaced throughout previous chapters in various examples and discussions: 

•    Given sufficient data, time series analysis allows us to make short-term 
predictions, even in chaotic systems. 

Lyapunov exponents help us quantify the limits of our predictions and 
measure our system's sensitivity to small disturbances. This information can 
help to prioritize various strategic options according the relative 
unpredictability of their outcomes. 

Knowledge of common transitions in chaotic systems can suggest ideas for 
protecting and attacking military systems. 

• Calculations   of  attractors   depict   distributions   of  outcomes,   providing 
probability information to decision makers. 

Calculations of information dimension indicate the minimum number of 
variables needed to model a system. Moreover, a small value for dimension 
also represents strong evidence that the underlying dynamics are not random. 
A system with a non-integer dimension must contain nonlinearities (i.e. any 
previous models that are strictly linear must be incomplete). 
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Pattern Recognition. In recent research at the Air Force Institute of Technology, the 

theory of embedded time series allowed Capt James Stright to automate the process of 

identifying military vehicles from a few measurements of vehicle position and velocity. 

He also determined how long a data sequence we need in order to accurately classify 

these moving objects. You can visualize the basic concept: the position of a drone 

aircraft with locked controls, for instance, should be far easier to predict than the position 

of a piloted aircraft conducting evasive maneuvers. So Capt Stright generalized the idea 

of tracking objects as they move. At any fixed time, he notes a vehicle's position and 

velocity and logs that information in a vector. Evolutions of these vectors comprise an 

embedded time series; the patterns evident in this embedding allow us to characterize 

typical vehicle behaviors. Capt Stright verified his technique, correctly distinguishing 

the motions of five military vehicles. 

Feedback Revisited. Earlier in this chapter, we discussed the role of feedback in chaotic 

military systems. Chaos Theory brings new insights and options to strategies that include 

"pinging" an enemy system to see how it responds. Think, first, about the various 

parameters we can control when we perturb an adversary's system—a large ground force, 

for instance. We can strike it periodically or unpredictably. We can change the 

magnitude (firepower), character (area versus directed fire), and frequency of our 

assaults. We can attempt to induce or reduce chaotic responses. We can reduce the 

amount of feedback in the system through operations security and information control. 

You might also envision particular attack strategies that apply our study of night-light 

dynamics to long range perturbations of various sensors present on enemy systems. 

Again, suppose we are forced to close a base or a port, and replace our "Forward 

Presence" there with a "Forward Patrol" or "Frequent Exercise" of some itinerant military 

presence. Chaos Theory highlights relevant parameters we should consider in our 

strategic planning, to include: the size of patrolling forces, the distances to the areas of 
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interest, and the frequency of patrolling activities. Further, the dynamics common to 

chaotic systems give us specific transitions we might expect in our adversary's response 

as we vary any of those key parameters. 

Fire Ants. Chaos applications in future strategies will follow in the wake of numerous 

revolutions in military technology. One such revolution may come in the form of "fire 

ant" warfare—combat of the small and the many. It will see a battlefield covered with 

millions of sensors (the size of bottle caps), emitters (like pencils), microbots (like mobile 

computer chips), and micro-missiles (like soda bottles). These many devices will be 

deployed by a combination of pre-positioning, burial, air drops, artillery rounds, or 
07 

missiles, and will saturate regions of the battlefield terrain. The need for us to 

understand the dynamics of weather systems and clouds suddenly becomes more than an 

academic exercise, because "fire ant" warfare produces a new combat climate: battlefields 

filled with new clouds that carry lethal capabilities. Anyone designing an enormous 

autonomous system like this, with millions of nonlinear interactions, better be familiar 

with the complete range of possible dynamics, as well as with the means to control and 

defeat such a system. 

SDI Policy. Saperstein describes another use of Chaos in a numerical model to guide 

policy and strategy. His paper carefully qualifies his findings in an intelligent, numerical 

exploration and appropriately cautious use of modeling. The policy question was 

whether or not an implementation of a Strategic Defense Initiative would tend to 

destabilize an arms race between two superpowers. In this case, he relied on a nonlinear 

model to predict the outcomes of various options to help guide the policy making. 

Saperstein emphasizes his model is a procurement model, not a force-on-force 

simulation, that includes inventories and production rates of various types of weapons. 

Among his conclusions, he finds, for example, that a bigger qualitative change in the 
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opponent's behavior comes with the introduction of defensive weapons, more so than 

with even drastic increases in annual ICBM production.   Also, beyond his specific 

i *       98 
findings, his work exemplifies the process of using models to guide decision making. 

Operational Art. In the Joint Military Operations Course at the Naval War College, we 

often focus on the following four questions facing the operational artist: 

1. What military condition must be produced in the theater of operations to achieve 
the strategic goal? 

2. What sequence of actions is most likely to produce that condition? 

3. How should the resources of the force be applied to accomplish the desired 
sequence of actions? 

4. What are the costs and risks of performing that sequence of actions? 

The operational commander, of course, has access to the same tools available to 

any decision maker. Using these tools, the most direct applications of Chaos results are 

likely to be in answers to Question 2, where Chaos tools can provide information about 

probabilities of outcomes. Notice, too, that when we provide probability information to 

a commander, the quantity and frequency of our intelligence analysis also represent 

feedback in our decision processes, feedback that can produce transitions in our own 

performance. 

The second most likely use of Chaos will come in the answer to Question 4, 

where we balance the costs and benefits of various courses of action. This paper 

proposes the use of Lyapunov exponents to help us prioritize our options based on the 

relative unpredictability of our actions. No simulations or computer programs have yet 

been developed to implement this idea. 

Finally, Chaos Theory may also address issues raised in Question 3, developing 

options for force application, when one of the following conditions holds: 
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We have access to enough well-synthesized data on our adversaries' behavior 
to allow us to make near-term predictions of their actions. 

The opponents use sensors or electronics that allow us to control their systems 
through feedback techniques. 

We face a large force, where we can exploit our knowledge of the distribution 
of behaviors in large interacting systems. 

We engage in prolonged combat, to have sufficient time for our observations 
of enemy behavior to reveal trends and patterns in enemy responses. 

Exploiting Chaos. Overall, we need to anticipate chaotic dynamics so we can exploit 

them in our own systems as well as in enemy systems. A final caveat: besides the 

necessary reminder that combat participants can adapt in surprising ways, also remember 

that unpredictable changes in enemy dispositions can also turn in the enemy's favor. In 

1941, for instance, Japan managed to destabilize America's isolationist position by 

bombing Pearl Harbor. The fact that this destabilization worked against their hopes 

underscores the problem that the uncertainty produced by arbitrary disruption can lead 

to many unpredictable results, sometimes for better, sometimes for worse. Fortunately, 

the results of Chaos Theory discussed above offer many strategic options beyond the 

mere disruption of enemy systems. 

Information Warfare Revisited 

Earlier we noted the vulnerability of communications systems to Chaos. Vast 

numbers of coupled electric systems, many of which are controlled with feedback 

mechanisms, process unfathomable quantities of information, all at the speed of light, 
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with frequent iterations. Without the details of a given system, we can't guarantee the 

onset of Chaos, but we should definitely expect chaotic dynamics in systems with the 

above characteristics. 

So far, we've mentioned the potential implications of enhanced data compression 

for Information Warfare, and the need to be aware of the numerical Chaos sometimes 

present in digital computations. I mention Information Warfare again in this section to tie 

together a few other applications discussed above. For one, Chaos applications in secure 

communications, in encryption and in synchronized circuits, will certainly play a part in 

Information Warfare. Also, Capt Stright's automated algorithm for pattern recognition 

could eventually be applied to identify information "targets" as well as it identifies 

physical targets. 

Fractals 

Fractals have many more applications than merely serving as identifiers for time 

series with non-integer dimensions. Fractals play important roles in system scaling and 

in other image compression applications. First, we'll examine some consequences of the 

multiple scales of dynamics present in real systems. Then we'll see how researchers take 

advantage of these multiple scales to compress images with fractal transformations. 

Scaling.  We can gain new perspectives of military systems by considering dynamics on 

various physical scales, scales that become evident through the study of fractals.   For 
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instance, you can probably see Chaos right now, in a system somewhere near where 

you're reading this: in the traffic patterns outside your building, in a stop sign wobbling 

in the wind, in the light flickering overhead or on your computer display. However, 

likely as not, there are many nearby chaotic dynamics occurring on physical scales that 

you probably don't care about: quantum fluctuations, or irregularities in the power output 

from your watch battery. The important idea is that you may sometime encounter system 

behavior you can't explain because there may be key nonlinearities on a scale you 

haven't considered yet. 

Once we develop an awareness of the universality of many chaotic dynamics, we 

realize that some dynamics and physical properties occur on all scales in many systems, 

both natural and artificial. Gleick expresses this idea quite eloquently, guiding us to 

cases where we should expect to see scale-independent structures and dynamics: 

How big is it? How long does it last? These are the most basic 
questions a scientist can ask about a thing.. . . They suggest that size and 
duration, qualities that depend on scale, are qualities with meaning, 
qualities that can help describe an object or classify it... . 

The physics of earthquake behavior is mostly independent of scale. 
A large earthquake is just a scaled-up version of a small earthquake. That 
distinguishes earthquakes from animals, for example—a ten-inch animal 
must be structured quite differently from a one-inch animal, and a 
hundred-inch animal needs a different architecture still, if its bones are 
not to snap under the increased mass. Clouds, on the other hand, are 
scaling phenomena like earthquakes. Their characteristic irregularity— 
describable in terms of fractal dimension—changes not at all as they are 
observed on different scales. . .. Indeed, analysis of satellite pictures has 
shown an invariant fractal dimension in clouds observed from hundreds of 
miles away. 
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Many other common systems will exhibit the same dynamics on virtually any 

scale: hurricanes, fluid flow, airplane wings and ship propellers, wind tunnel 

experiments, storms, and blood vessels, to name only a few. 

How does our awareness of scaling properties broaden our perspective of military 

affairs? Just like we can conserve time and money by experimenting with scale models, 

we can sometimes resolve questions about a system's behavior by examining one of its 

components on a more accessible scale. For example, the electronic architectures of our 

war game facilities nationwide are being configured to network as many sites as possible 

to conduct large-scale simulations. Unfortunately, the combat dynamics that are 

simulated at different facilities operate on different scales of combat, where some are 

tactical simulations, some operational, and others strategic. War game designers are 

currently faced with difficult questions concerning how to connect the flow of 

information among these participants on differing scales. The answer may eventually lie 

in a network based on fractal scaling of some kind. 
100 

Fractal Image Compression. The need for data compression grows more apparent daily 

as ships at sea saturate their available communication links, and users worldwide crowd a 

limited number of satellites and frequency bands.101 Other requirements for information 

compression arise in large modeling problems, where physicists, for example, try to 

model cloud dynamics in simulations of laser propagation. One recent breakthrough in 

image compression came from Michael Barnsley's ingenious manipulation of fractals, 

leading to a process defined in his Collage Theorem. 
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To compress an image of a leaf, for instance, Barnsley makes several smaller 

copies of the original image, and covers the original with the smaller copies. He tabulates 

all the transformations necessary to shrink, rotate, and translate those copies in order to 

cover the original leaf. That list of transformations is the only information necessary to 

reproduce the original image! Now, rather than transmit a picture of a leaf via pixel-by- 

pixel arrays of hue and brightness, we can transmit a brief set of instructions so the 

receiver can redraw the leaf very efficiently. By transmitting these short instruction sets, 

Barnsley's process compresses large color images in excess of 250:1. Not only has 

Barnsley demonstrated this process with simple images, but he's proven that you can 

derive transformations for any image, up to the best resolution of your sensor! 

The tremendous compression ratios by these fractal compression techniques make 

possible new applications in digitized maps for numerous uses, including devices for 

digitized battlefield equipment and avionics displays. Moreover, the end product of this 

transmission process is, in fact, an attractor of a chaotic system, so it contains density 

information about how often a given pixel is illuminated by the receiver's redrawing 

program. Among other uses, this local density information translates into useful data for 

the physicist interested in propagating lasers through clouds. 

Barnsley's company, Iterated Systems, Inc., has already had several Army and 

103 
Navy research contracts to make further advances with this compression technique. 

One of the resulting products was a patented algorithm for pattern recognition, with the 

potential to develop automated means to prioritize multiple target images for a weapons 

system. Iterated Systems has also used fractal compression to transmit live motion video 

across standard telephone lines, a capability with numerous operational applications. 
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Metaphor 

You don't see something 
until you have the right metaphor to let you perceive it. 

- Robert Shaw 

I've made this section deliberately short. Chaos does offer powerful metaphors 

that lend genuinely new perspectives to military affairs, but we have access to so many 

practical applications that flow from Chaos Theory, I will minimize this brief digression. 

The main idea is that the metaphors of Chaos bring a fresh perspective—not just a new 

vocabulary for old ideas. This perspective comes with an awareness of new possibilities: 

new information (fractal dimensions, Lyapunov exponents), new actions (feedback 

options, Chaos control), and new expectations (stability, instability, transitions to Chaos). 

In a recent attempt to use Chaos metaphors for new historical perspectives, Lt Col 

Theodore Mueller, at the Army War College, depicts the Mayaguez crisis as the result of 

a system destabilized due to its sensitivity to small disturbances. He uses the image of an 

attractor to describe departures from the "range of expected behavior" for an adversary. 

In another case, a Sante Fe Institute Study generalizes the results of classic predator-prey 

equations and draws interesting politico-military analogies from simple models.   The 
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study makes a rough comparison of how the onset of epidemics, modeled in these 

107 
equations, compares to social dynamics that may spark political revolutions. More 

case studies applying Chaos metaphors are likely to follow, as the military community 

grows familiar with the theory's more practical results. 

The Human Element-Chance, Choice and Chaos 

Problems. Certainly, Chaos Theory can boast a tremendous record in mechanical and 

numerical applications, but can we, and should we, use these results in systems that 

include human input? How do we reconcile Chaos results with the apparently random 

dynamics of unpredictable human decisions, the transient nature of social systems, or the 

Clauswitzian interaction of adversaries in combat? 

Some of these questions necessarily arise in any debate over the utility of 

modeling a system that includes human decisions or responses. In particular, we have 

cause for suspicion, because the analysis of social systems assumes we are able to 

recognize and predict trends in human behavior. If such predictions are possible, where 

does that leave our perspective of choice and free will? 

Even if we suspend our disbelief long enough to explore candidate models for 

human behavior, we face significant obstacles to executing our analysis: 

• Aggregate data sufficient for strong empirical tests simply do no exist for 
many important social systems. 

• Social systems are not easily isolated from their environment. 
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Social systems encompass huge scales in time and space, vast numbers of 
actors, cost variables, and ethical influences. 

108 
•    The laws of human behavior are not as stable as the laws of physics. 

This section argues that Chaos Theory does shed light on human behavior that is 

relevant to military affairs. Certainly, Chaos is only one of the many rich dynamics we 

can observe in human behavior. However, I will focus on some of the constraints on 

human behavior that give us reason to hope for some insight from chaotic modeling and 

simulation efforts. Next, I'll present recent evidence of the presence of Chaos in human 

behavior. Finally, I'll offer some initial ideas on how we might apply additional Chaos 

results to military affairs. 

Hope. Let's look at some sources of hope for understanding human systems with the 

help of Chaos Theory. First of all, despite our seemingly unlimited capacity for 

creativity, we will always make decisions always within constraints imposed by limited 

resources, limited time, personal habit, and external pressures such as policy and opinion. 

Some of our constraints stem from periodic cycles in our environment, both natural and 

fabricated: 

• 24-hour days 

• human physical endurance 

• seasonal changes 

• planetary motion 
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• tides 

• revisit times for a satellite with a small footprint 

• equipment reliability and maintenance 

• replenishment and resupply 

• time cycles necessary to conduct battle damage assessment 

• budget cycles 

• periodic elections 

This list is not intended, of course, to promote astrology applications in strategic 

planning. However, we've seen plenty of physical examples where periodic 

perturbations can drastically alter a system's dynamics, causing significant shifts 

toward or away from stable behavior. My position is that the pervasiveness of these 

constraints, often periodic constraints, gives us hope to expect chaotic dynamics even in 

systems influenced by human decisions and responses. 

Another reason to be optimistic about Chaos applications in human behavior 

comes from the very nature of attractors: within an attractor's basin, transient behavior 

will die out and a system will only be found in states that lie on the attractor. Even if we 

perturb the system at a later time, it must return to the attractor. Now, I'll present some 

evidence below which points to the existence of non-random chaotic dynamics in human 

systems. Those dynamics, in turn, imply the presence of attractors for those systems. 

This does not imply that there is no influence of choice and chance in these systems. 
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Rather, I submit that, in these cases, human decisions represent one of the following 

influences: 

1. perturbations of behavior which would otherwise remain on an attractor, 

2. changes in the distributions of behavior, i.e., tendencies of the system to stay 
on any particular portion of the attractor, or 

3. choices from multiple attractors that exist in a single system. 

My guess is that we will eventually find phase spaces with multiple attractors to 

serve as the model for the various options available to us or to an adversary. As a playful 

analogy, think about the possible "state" of your mind as you read this essay; suppose we 

can somehow characterize that state by measuring your thoughts. Is there any hope of 

controlling or manipulating that system? If you think not, consider what happens to your 

thoughts when I tell you, "DON'T think of a pink elephant"? Whatever attractor your 

mind was wandering on before, did your thoughts pass through my "pink elephant" 

attractor, even momentarily? I contend that we have hope of modeling, understanding, 

and perhaps controlling some features of human influences in military affairs, perhaps 

only briefly, but long enough to enhance the planning and execution of numerous military 

activities from acquisition to combat. 

In a study of two species of ants, where social dynamics are much easier to 

observe in a controlled environment, Nobel Prize winners Nicolis and Prigogine give us 

some additional hope for making analyses of human systems: 
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What is most striking in many insect societies is the existence of two 
scales: one at the level of the individual, characterized by a pronounced 
probabilistic behavior, and another at the level of the society as a whole, 
where, despite the inefficiency and unpredictability of the individuals, 
coherent patterns characteristic of the species develop at the scale of an 
entire colony. 

While they draw no premature conclusions about the immediate consequences of these 

results for human behavior, they offer this evidence a reason to be optimistic about the 

possibility of analyzing and controlling group dynamics. Ralph Abraham, of the 

University of Michigan, also reminds us that we can study human decisions through 

game theory, where chaotic dynamics have already surfaced in the conduct of different 

games. A number of complex models are already making significant progress in 

explaining the actions and reactions among multiple players. 
no 

Evidence of Chaos. Is there evidence of chaotic behavior in human systems? Let's 

remember what sort of symptoms we're looking for: a well-defined system, a clear list of 

observables to measure, aperiodic changes in those observables, bounded output, 

sensitivity to small disturbances, evidence or knowledge of nonlinear forces or 

interactions, attractors with fractal dimension, and small, non-integer information 

dimension. Several research papers report findings of many of these symptoms in 

historical data as well as in simulations using models that correspond well with 

observed human behavior. 

Robert Axelrod, for one, has created a model that predicts how elements in a 

system group themselves into patterns of compatible and incompatible elements. He 

modeled nonlinear interactions with basins of attraction that predict how multiple actors 
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in a scenario will form opposing alliances. Typical aggregation problems where his 

results may apply include: international alignments and treaties, alliances of business 

firms, coalitions of political parties in parliaments, social networks, and social cleavages 

in democracies and organizational structures. The basic inputs to his model are a set of 

actors, the size of each nation-actor, their propensity to cooperate with each other, 

partitions (physical and otherwise), the distance between each pair, and a measure of 

"frustration" (how well a given configuration satisfies the propensities of a country to be 

near or far from each other actor). Axelrod's theory correctly predicts the alignment 

of nations prior to World War II, with the exception that Poland and Portugal were 

mistakenly placed on the German side. He also had comparable success predicting how 

computer businesses would align behind various market standards, such as the selection 

of operating systems. His prediction correctly accounted for 97% of the total number of 

firms in the sample. 

In another discovery of Chaos in social systems, Diana Richards presents several 

examples of experimental and empirical evidence in strategic decision making. First, she 

expands a simulated prisoner's dilemma game, to illustrate possible dynamics in 

collective decision making in politics and economics. In this model, nonlinear 

interactions arise because the players' decisions depend on their responses to actions in 

previous steps. She allows each of two simulated participants to choose from 100 

options; various stable and chaotic dynamics result when she iterates the model. 

On one hand, Richards emphasizes the difficulties in verifying such a model, 

because of the problem of collecting real data over as many repetitions as she can easily 

simulate numerically.  On the other hand, she was able to apply time series analysis to 
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uncover chaotic dynamics in historical data. In particular, she discovered evidence of 

Chaos in US defense spending (as percentage of total federal spending) between 1885- 

1985, and in the number of written communications per day (between and within 

governments) during the Cuban missile crisis, October to January 1962. Again, the 

presence of Chaos in these systems does not indicate that their behavior is 

completely predictable, but the number of variables which drive their dynamics 

may be much smaller than our intuition might suggest, and we may have a better 

chance of modeling, understanding, and controling these situations than previously 

thought possible. 

A tremendous study of historical data was completed by a team of students at the 

Air Command and Staff College (ACSC) in 1994. I found their report to be the most 

thorough research to date which examines historical data with the tools of Chaos Theory. 

Their calculations of fractal dimensions and return maps present conclusive evidence of 

Chaos in tactical, operational and strategic dynamics of military activity: 

• aircraft loss data for the entire Vietnam War (See Figure 2)' 

• Allied  casualty  data  during  their  advance  through western  Europe  in 
World War II; 

historical US defense spending (results consistent with the Richards report, 
above). 

Recent investigations of well-known models in system dynamics have revealed 

previously unsuspected regimes of deterministic Chaos.   One outstanding example is 
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John Sterman's comparison of two numerical models to controlled tests with human 

players. The first scenario is a production-distribution model of the Beer Distribution 

Game, where subjects are asked to manage a product inventory in the face of losses, 

delays in acquiring new units, multiple feedbacks, and other environmental disturbances. 

Despite the difficulties of conducting controlled experiments, Sterman found that the 

human subjects' behavior is described fairly well by the model dynamics. This direct 

experimental evidence that Chaos can be produced by the decision-making behavior 

of real people has important implications for the formulation, analysis, and testing of 

models of human behavior. 

Sterman's second scenario simulates a long economic wave in which players 

adjust inventory orders in response to long-term indicators of supply and demand. The 

simulated business begins in equilibrium; an optimal response to the provided indicators 

actually returns the system to equilibrium within six annual cycles. However, of the 49 

subjects tested, none discovered the optimal behavior, and the vast majority of subjects 

produced significant oscillations, many of which showed evidence of Chaos. 

Further practical evidence of Chaos in individual behavior is discussed in recent 

NASA-sponsored research. In lab tests, researchers take measurements of a human EEG 

in efforts to characterize the "error prone state" of, say, a tired pilot. Are some 

individuals more prone to enter these states than others? What is the EEG signature of 

such a "hazardous state of awareness"? They found that standard statistical tools could 

not distinguish the EEG signal of an individual engaged in various activities, from mental 

math to image identification. However, the average pointwise (fractal) dimension of the 

EEG did distinguish the different types of activity.     This work has the potential to 
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develop automated monitoring of pilots in flight, to warn of levels of decreased alertness. 

More generally, this gives us more hope for applying Chaos results to understand the 

dynamics of human behavior. 

Implications. There are still very few documented attempts to apply Chaos results to 

social systems, partly due to the newness of Chaos Theory, and partly due to the practical 

problems discussed above. However, many authors have noted important implications 

of the evidence of Chaos in social systems. Hal Gregersen and Lee Sailer, for instance, 

draw the following conclusions: 

• Social studies rely too much on single measurements of population cross- 
sections; we need to focus instead on data taken incrementally over long 
periods of time. 

• We need to recognize Chaos and use the new tools of dynamical systems in 
addition to standard statistical analysis. 

The ACSC research team also offers a good summary of the implications of 

chaotic dynamics in the data they studied: 

Many erratic systems are at least partly deterministic, so don't throw out your 
noisy data. 

The presence of Chaos requires models to include nonlinear interactions. 

•    The inclusion of nonlinearity implies that models will likely have no 
analytical solution, so don't throw out your computers (or your analysts)! 
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Fractal dimensions estimate minimum number of variables needed to build 
models. 

Some regions of phase space are more sensitive than others; chaos tools can 
help identify those different regions. 

Tracking the patterns in attractors also helps identify excluded regions of 
behavior. 

How To Apply the Results. Ultimately, we will need to verify any theoretical claims in 

comparisons with real systems. In light of the problems of matching numerical models to 

human behavior, we're left with two basic options: 

1. construct and analyze formal models only, comparing model results to 
historical data; 

2. develop lab experiments with human subjects interacting with computer- 
simulated social systems, or "microworlds.' 

119 

These two options still leave us a lot of room to apply Chaos Theory to the study 

of social systems. For instance, Gottfried Mayer-Kress sets up a simple model of a 

superpower arms race, and discusses several immediate consequences of his simulated 

results. Suprisingly, the model gives little-to-no warning of the onset of political 

instability via the usual transitions to Chaos.120 Thus, the use of a chaotic model can 

indicate uncommon transitions to unstable behaviors, providing new insight to what 

can happen in reality, despite the crudeness of the model. 
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How might we specifically adapt Chaos results to organizational behavior? A 

recent article discusses The Conference Model™, a series of conferences structured to 

help a large group implement effective reorganization. The process involves several 

carefully structured steps that involve a large number of group members, to encourage 

"ownership" of the process, comparable to current DOD Total Quality policies and 

processes. The authors report significant success with their process; it can be couched in 

terms of Chaos Theory to shed light on outcomes to expect from their suggestions for 

further research. 

To begin, they define their system well: basically, an organization with fixed 

membership, divided into subgroups of managers and employees, planners and doers. 

The key parameters are the number of people of the various groups involved in the 

planning activities, the number of meetings, the number and timing of follow up 

activities. The measures of effectiveness include the time required to design the 

organization's plan for change and the time taken to implement the changes. 

One of the issues raised in this study: what is the outside limit on the number of 

people who can attend a conference? I would recast this question as an issue about the 

ranges of possible dynamics, as any of the key parameters are changed. For instance, 

what transitions are likely as the number of participants involved in the planning process 

decreases gradually from 100% of the organization? At what point do we note a 

substantial decrease in the effectiveness of the plan's implementation? The universal 

results  of chaotic  dynamics  suggest we  should  expect  specific transitions  (e.g., 
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oscillations of some type) sometime before we reach the point of total failure of the 

,        • 121 planning process. 

John Sterman's conclusions about his lab experiments provide a good summary of 

the tremendous potential, and the unresolved issues, of applying Chaos to human 

systems: 

Test results show that participants' behaviors can be modeled with a high 
degree of accuracy by time-tested decision rules. 

•   New chaotic dynamics have been noted, in well-accepted models, for 
reasonable parameter ranges. 

The evidence strengthens the arguments for the universality of these 
phenomena. 

The short time scales of important social phenomena often render the utility 
of Chaos questionable. 

• The role of learning is difficult to gauge: e.g., in the experiments discussed 
here, thousands of cycles are simulated, however, evidence shows that 
subjects began learning after only a few cycles. 

Most important, the results demonstrate the feasibility of subjecting theories of human 

behavior to experimental test, in spite of the practical difficulties. Chaotic dynamics will 

continue to surface in future investigations; we need to be prepared to expect and 

recognize those dynamics when they occur. 
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Chaos and Military Art 

This chapter compiles substantial evidence of predictable, controllable dynamics 

governing many aspects of military affairs. Am I saying there is no room left for Military 

Art? Quite the contrary, while chaotic dynamics are sufficiently universal to 

revolutionize our profession, Chaos Theory is only one of many necessary tools. Where 

is the individual art of the commander still evident? A good simulation, for instance, or a 

good summary of intelligence estimates, may draw a clear picture of an adversary's 

attractor. Maybe the image displays trends in force deployment, in aircraft ground tracks 

or in satellite footprints. However, an attractor only helps express probabilities to the 

commander. The commander still requires a sense of operational art to evaluate those 

probabilities in various courses of action, assess the risks of diverse options, and choose 

a single course of action. 

What Do You Want Us To DO? 

This nontrivial question was posed by a concerned audience member after I 

presented an introduction to Chaos at ACSC. I'm convinced we must not leave Chaos to 

the analysts, and wait a few years for more results. I encourage you to gain confidence 

that you can learn the essential material from good readings and patient thought. You can 

discern good sources from bad, using the Chaos Con tips and good sense. You can build 

more intuition for what to expect, what Chaos can do for you, when you need to consult 
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your in-house analysts, when you need to pay a contractor to do more research, and when 

you should tell the contractors to go to the library and do their own homework on their 

own money. You should develop an expectation, an anticipation, for chaotic dynamics in 

the motion and changes you observe daily. 

Be confident reading. When you write, use the vocabulary with care, and at least, 

avoid the pitfalls I outline in my section on the Chaos Con! However, DO WRITE. 

Publish your progress and successful problem-solving and models, to show others your 

process for applying the results of Chaos Theory. Above all, be aware of the avenues 

open to you due to the far-reaching results of Chaos Theory. 

David Andersen outlines several additional points he feels should be highlighted 

when we teach anyone about chaotic dynamics. These points certainly offer good advice 

123 
for any decision maker considering the application of Chaos to military affairs: 

• Understand phase plots in order to develop an intuition for Chaos. 

• Learn to distinguish between transient and steady-state dynamics. 

• Be ready to spend time computing. 

• Take the time to get some theoretical background. 

• Learn to recognize when Chaos might be near and how to diagnose it when it 
appears. 
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Chapter Summary 

Tremendous opportunities await us in the numerous realms of Chaos applications. 

We have access to new insights and strategic options that were inconceivable only 20 

years ago: universal transitions in system behavior through the careful control of system 

feedback; new capabilities to predict short-term dynamics and long-term trends; options 

for controlling erratic systems previously dismissed as random; extraordinary advances in 

computations that enhance our communications capacity and improve our simulations. In 

the end, despite reasonable concerns about the utility of modeling, in general—and the 

analysis of human systems, in particular—we find a wealth of new information, actions 

and expectations made possible due to the continuing advances made in the 

understanding of Chaos Theory. 
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PART 111 

What Next? 

A Roadmap to More Chaos 
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FIVE 

Suggestions for Further Reading 

This chapter summarizes the best resources I encountered during my research. 

Many Chaos books have appeared in just the last four years; this review only scratches 

the surface of the fantastic pool of published resources, not to mention numerous videos 

and software. My aim is to offer some guidance: to instructors on sources to recommend 

for additional reading; to students on the best leads for more detail; to all readers curious 

about the individuals and organizations who are researching and writing in diverse areas. 

The focus of my essay has been to build a bridge from Chaos Theory to your 

areas of interest; I selected the following books and periodicals to serve as a rough map of 

interesting destinations for you to consider. The most thorough, well-developed readings 

came from: Gottfried Mayer-Kress (numerous articles), Woodcock and Dockery (The 

Military Landscape), John D. Sterman (writing in a special issue of System Dynamics 

Review, which you ought to read), James Gleick's classic, Chaos, and a special issue of 

Naval Research Reviews devoted to Chaos research sponsored by the Office of Naval 

Research. Further discussion of these and other references follows. 
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James Gleick, Chaos: Making a New Science (New York: Viking Penguin Ine, 1987). 

Gleick composes vivid descriptions of the people and places at the roots of Chaos 

Theory. He interlaces his narratives with detailed personal interviews. His book is very 

readable, and he assumes no technical background. This book is not the best place to 

learn the details of Chaos—the concepts presented are very general—but it's a pleasant 

exposition of the wonder of discovery, the universality of Chaos, and its range of 

applications. Take the time to read all the endnotes where Gleick hides additional 

interesting facts. A great piece of storytelling. 

Heinz-Otto Peitgen, Hartmut Jürgens and Dietmar Saupe, Chaos and Fractals: New 
Frontiers of Science (New York: Springer-Verlag, 1992). 

The authors have compiled a veritable encyclopedia of Chaos. The text is very 

readable, assumes very little technical background, and explains fascinating connections 

among diverse Chaos applications. If you only put one Chaos book on your shelf, you 

should consider this one. 
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System Dynamics Review 4 (nos. 1-2,1988). 

This special issue assembles a fine collection of articles which discuss important 

issues of Chaos Theory in great depth. The topics range from the very practical to the 

philosophical. John D. Sterman, for instance, opens the issue with a well-written 

introduction that surveys the basic concepts and results of Chaos Theory; he also 

contributes a strong paper on "Deterministic Chaos in Models of Human Behavior: 

Methodological issues and Experimental Results." This is another must-read resource. 

J.M.T. Thompson and H.B. Stewart, Nonlinear Dynamics and Chaos (NY: John 
Wiley & Sons Ltd., 1986). 

The authors aim this superb text at engineers and scientists, analysts and 

experimentalists. They require as background only "a little familiarity with simple 

differential equations." Step by step, they introduce Chaos, what to expect, and how to 

interpret data sets with irregular behavior; they use plenty of helpful pictures and graphs. 

In addition, they present a healthy range of applications, focusing on the ways simple 

models can generate complicated dynamics in: slender, vibrating structures, resonances of 

off-shore oil production facilities, large-scale atmospheric dynamics, particle accelerators, 

chemical kinetics, heartbeat and nerve impulses, and animal population dynamics. They 

also include a fantastic bibliography with over 400 entries. This is a great book from 

which to learn Chaos Theory. 
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John T. Dockery and A.E.R. Woodcock,  The Military Landscape (Woodhead 
Publishing Limited, Cambridge, England, 1993). 

This book presents an exceptionally detailed analysis of several models and the 

implications of their dynamics, viewed through the lenses of catastrophe theory and 

Chaos. New perspectives of combat dynamics and international competition surface 

during the analysis of the models' behaviors. The authors discuss extensive applications 

in strategy, posturing, and negotiation. In one of their many simulations, they uncover 

chaotic dynamics in the classic Lanchester equations for force-on-force combat, with 

reinforcements. They demonstrate the use of many Chaos tools, and they take great pains 

to show the relationships among the tools. Overall, this book includes more analytical 

details than most recent reports, and it is a thorough review of many models which 

exhibit chaotic dynamics. 

John Argyris, Gunter Faust, Maria Haase, An Exploration of Chaos, Texts on 
Computational Mechanics, Vol. VII (New York: North-Holland, 1994). 

Offered as introductory text on Chaos Theory, this book targets "aspiring 

physicists and engineers". A good deal of general theory precedes a review of physical 

and mechanical applications. They claim to assume no deep math background, but you 

really need more than a casual familiarity with differential equations and vector calculus 

to follow along.   The book has several strengths:   a detailed discussion of the logistic 
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map; a nice compilation of classes of bifurcations; an interesting analysis of bone 

formation and regrowth. The applications are presented in fine detail, making the results 

reproducible for interested readers. Most important: the authors outline a general 

process of theoretical and numerical investigation appropriate for technical 

applications of Chaos results. They conclude with a spectacular bibliography of primary 

technical sources. 

Katz, Richard A., ed., The Chaos Paradigm: Developments and Applications in 
Engineering and Science, American Institute of Physics (AIP) Conference 
Proceedings 296, Mystic, CT, 1993 (New York: AIP Press, 1994). 

This is a terrific survey of current research sponsored by the Office of Naval 

Research and the Naval Undersea Warfare Center. The list of participants is a useful 

Who's Who of many current research areas; the articles sample the diverse fields where 

DOD engages in active research. Anywhere from two to four brief articles on each of the 

following topics cover: Math Foundations of Chaos, Mechanical Sources of Chaos, 

Turbulence, Control of Chaos, Signal Modeling, Noise Reduction, Signal Processing, and 

Propagation Modeling. 
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Todor Tagarev, Michael Dolgov, David Nicholls, Randal C. Franklin and Peter 
Axup, Chaos in War: Is It Present and What Does It Mean? Report to Air Command 
and Staff College, Maxwell AFB, Alabama, Academic Year 1994 Research Program, 
June 1994. 

This was the best in-depth report examining historical data for evidence of 

Chaos. The authors find chaotic dynamics in tactical, operational and strategic levels of 

military activity: 

• aircraft loss data for the entire Vietnam War; 

• Allied casualty data in their advance through western Europe in World War II; 

• historical US defense spending. 

The paper's greatest strength:   the discussion of data collection and analysis, the 

obstacles the authors encountered, and details of their search process. This full report 

was much more meaningful than the subsequent article they distilled for the Airpower 

Journal in late 1994.124 Both the short article and the full essay contain some substantial 

technical errors in the basics of Chaos, but the authors have clearly done their homework. 

T. Matsumoto et al., Bifurcations: Sights, Sounds and Mathematics (New York: 
Springer-Verlag, 1993). 

This textbook generally expects the reader to have an extensive mathematical 

background, but it starts with a fantastic section describing simple electronic circuits 

which exhibit a vast array of chaotic dynamics.  This is a great reference for those with 
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access to or interest in electronics applications. The book also includes a thorough study 

of various classes of bifurcations common to many dynamical systems. 

Edward Ott, Tim Sauer and James A. Yorke eds., Coping with Chaos: Analysis of 
Chaotic Data and the Exploitation of Chaotic Systems (New York: John Wiley & 
Sons, Inc., 1994). 

Topicwise, this book is the best end-to-end compilation of chapters and articles, 

mostly published in other sources, which go from theoretical background to data analysis 

and applications. The text includes more recent work on practical suggestions for 

calculating dimensions, Lyapunov exponents, time embeddings, and control techniques. 

While the collection of articles is virtually all reprinted from primary sources, it's a good 

collection and can save an interested reader many hours of digging through periodical 

holdings. This book does require a solid background in vector calculus and differential 

equations, but is very practical. The articles are generally at the level of papers from 

Physical Review and Physical Review Letters. Again, you'll find a spectacular 

bibliography in this one. 

G. Mayer-Kress, ed., Dimensions and Entropies in Chaotic Systems: Quantification of 
Complex Behavior, Proceedings of an International Workshop at the Pecos River 
Ranch, New Mexico, September 11-16,1985 (New York: Springer-Verlag, 1986). 

This thin text publishes the collection of papers contributed to the workshop cited. 

Take note: this is an older reference describing some of the early results of Chaos 
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calculations. However, it presents a comprehensive review of techniques, modifications 

and improvements, and explanations of how they are related. The papers cover the 

intense details of how to calculate, in both theory and experiment: fractal measures, 

fractal dimensions, entropies, Lyapunov exponents. This is a highly technical work, not 

for the casual reader or weak of heart, and not a good place to first learn about these 

measurements. However, it is necessary reading for serious analysts embarking on 

numerical explorations of dynamical systems. 

Michael F. Barnsley and Lyman P. Hurd, Fractal Image Compression (Wellesley, 
Massachusetts: AK Peters, Ltd, 1993). 

Perhaps more dense (i.e. slower) reading than Barnsley's first text, Fractals 

Everywhere, this fine book focuses appropriately on only those details required to 

understand the fractal compression techniques patented by Iterated Systems Inc. It's a 

very thorough presentation, pleasant reading, and the text includes sample C source code 

and many demonstrations of decompressed images. 

Saul Krasner, ed., The Ubiquity of Chaos (Washington DC: American Association 
for the Advancement of Science (AAAS), 1990). 

This is another nice review of Chaos applications in a wide variety of disciplines: 

Dynamical Systems, Biological Systems, Turbulence, Quantized Systems, Global Affairs, 

Economics and the Arms Race, Celestial Systems.   Great bibliographies follow each 
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individual article; most chapters have not been published elsewhere, as is often the case 

in similar collections of contributions by many independent authors. 

Naval Research Reviews, Office of Naval Research (ONR), Vol XLV (3), 1993. 

This special issue is devoted to ONR-sponsored research in engineering 

applications of Chaos. Nice overview articles cover the following topics: Controlling 

Chaos, Noisy Chaos, Communicating with Chaos, Nonlinear Resonance in 

Neurophysiological Systems, and Image Compression. 
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SIX 

Further Questions to Research 

I've assembled, in this chapter, a broad collection of research topics that deserve 

more careful study. For the benefit of students and prospective research advisors, I've 

done my best to form the questions and issues into packages small enough to address 

within a short research term during in-residence Professional Military Education. 

Complexity: The Next Big Step. My report discusses how simple models can display 

complex behavior. However, once we develop a good intuition for Chaos, other 

questions arise immediately. Here's a peek at one of the central issues, only slightly 

oversimplified. Fact: fluids tend to move chaotically. The very nature of their dynamics 

makes them extremely sensitive to small disturbances. Now, the mixture inside a chicken 

egg is a fluid; that mixture is surely subjected to bumps and jostles during the formation 

of the baby chick inside. Question: if the fluid is chaotic, and its motion and behavior is 

so unpredictable, how does the creature inside always come out a chicken?! 

The answers to questions like these are the subject of the (even more recent) 

science of Complexity. You may consider researching complexity and self-organization. 

When and why do complicated systems sometimes organize themselves to behave 

"simply"? Which results of this theory are relevant for military decision makers? 
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Exponents. Identify a few specific military systems, perhaps within the context of a war 

game or through historical data, and calculate some Lyapunov exponents to compare the 

systems' relative sensitivity to perturbation. Prioritize the importance of various systems 

for protection or attack. 

Additional Dynamics. In Robert Axelrod's aggregation model, he successfully predicts 

the end states of two multi-party alliances, but there's still room to consider the dynamics 

of these alliances. How long do the alignments take to form? How stable are the end 

states? What sort of perturbations break the alliances? The analysis is static only, so far, 

though he does discuss the presence of "basins of attraction" of the end-state 

configurations. 

Feedback. Where are the feedback loops in current and future military systems? 

Consider both friendly and hostile systems. Also investigate both mechanical and social 

systems. Examine the strategic options for imposing feedback on these systems, and 

protecting the systems from unwanted feedback. What behaviors and system transitions 

should we expect? 

Sensors. What sort of sensors can we identify as vulnerable to imposed feedback? 

Where are they and how do they operate? What creative strategies can we devise to 

exploit or reduce their sensitivity to disturbances? 
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War games. Can we replace random variables in war games with simple chaotic 

equations that produce comparable distributions? Can the underlying equations lead to 

clues about which parameters are most important? How do our games behave now? Can 

any be driven into Chaos with the right combination of parameters? For a detailed 

discussion of the use of historical data for battlefield predictions, see Col T. N. Dupuy's 

book, Numbers, Predictions & War.126 He thoroughly discusses the issues of data 

compilation, modeling, prediction, and he tabulates exhaustive lists of relevant battlefield 

parameters. 

The Nonlinear Battlefield.   Maj Sean B. MacFarland, at the Army School of Advanced 

Military Studies (SAMS), defines "operational non-linearity" as the dispersed state of a 

combat force characterized by a complex of interconnecting fire positions and carefully 

sighted long-range weapons.127  His paper highlights the difference between geometric 

nonlinearity and systemic (dynamical) nonlinearity.   If we think of a force's physical 

disposition as its "state" in a combat system, old ideas of Forward Edge of the Battle 

Area may be replaced by emerging perspectives of overlapping attractors. 

Maj J. Marc LeGare, also at SAMS, proposed operations on the nonlinear 

battlefield organized in a "Tactical  Cycle":  disperse, mass,  fight, redisperse,  and 

reconstitute.128   Could we structure this cycle to protect our own dynamics, and take 

advantage of enemy cycles to break down their systems? If our forces are limited, can we 

exploit these cycles to apply our force efficiently and control the combat dynamics? 

What kind of small perturbations could we impose on such a combat system?   The 
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answers to some of these questions may spring from other articles that consider the tactics 

of potential adversaries on the nonlinear battlefield. 

We should also note that the idea of dispersed, nonsequential operations is not 

new. In 1967, Rear Admiral J.C. Wylie, contrasted two very different kinds of strategies. 

One is sequential, a series of visible discrete steps that follow one another deliberately 

through time. The other is cumulative, "the less perceptible minute accumulation of 

little items piling one on top of the other until at some unknown point the mass of 

accumulated actions may be large enough to be critical." He observes that, in the Pacific 

from 1941 to 1945, "we were not able to predict the compounding effect of the 

cumulative strategy (individual submarine attacks on Japanese tonnage) as it operated 

concurrently with and was enhanced by the sequential strategy [of the drive up the Pacific 

islands]."130 Strategies like these may lend themselves to deeper analysis through Chaos 

Theory. 

Case Studies. 

For want of a nail the shoe is lost, 
For want of a shoe the horse is lost, 
For want of a horse the rider is lost, 
For want of a rider the battle is lost, 
For want of the battle the war is lost, 
For want of the war the nation is lost, 
All for the want of a horseshoe nail. 

George Herbert (1593-1632) 
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We already noted one effort to examine the Mayaguez crisis in the light of Chaos 

results. This was, of course, only a rough beginning. Several historical case studies (all 

entitled For Want of a Nail\) highlight the sensitivity of combat events to small 

"disturbances." The following references provide a list of candidate cases to consider for 

further Chaos analyses. 

Robert Sobel composes a detailed counterfactual book of what would have 

happened had Burgoyne held Saratoga in the American Revolution. Hugh R. Wilson 

studies the ineffective application of economic sanctions against Italy, in the winter of 

1935-36, during the Italian military excursion into Ethiopia.132    Hawthorne Daniel, 

133 
investigates the influence of logistics on war in several interesting case studies: 

• American Revolution:   New Jersey 1776; Lake Champlain and the Hudson 
River 1777 

• Peninsular War: Spain and Portugal 1808 to 1814 

• The Moscow Campaign: Russia 1812 

• American Civil War: 1861 to 1865 

• Sudan Campaign: The Upper Nile 1896 to 1898 

• The Allied Invasion of Occupied Europe, WWII: 1944 and 1945 

Bibliography. With the recent explosion in Chaos resources, the preparation of a 

comprehensive bibliography would provide a tremendous service to the general research 

community. The reference lists in the texts I noted above are a great place to start. Many 

book reviews are also available to guide examinations of the most recent texts. 

156 



Write More! Above all, you should regard this essay as one voice in a continuing 

conversation. It will always be valuable for you to document other interesting thoughts 

and research. Please continue the conversation. In particular, there's plenty of room for 

open debate on any issues you feel I've missed or overstated. It would also be a great 

help to publish additional military applications of which you may be aware. I look 

forward to reading your thoughts. 
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SEVEN 

Conclusion 

This report has focused on those issues of Chaos Theory essential to military 

decision makers. The new science of Chaos studies behavior that is characterized by 

erratic fluctuations, sensitivity to disturbances, and long-term unpredictability. This 

paper conducted a thorough review of Chaos applications in military affairs, and 

hopefully, corrected some deficiencies in current publications on Chaos. 

We centered our Chaos study in three areas. First, we reviewed the fundamentals 

of chaotic dynamics, to build some intuition for Chaos. Second, we surveyed the current 

military technologies that are prone to chaotic dynamics. Third, we saw how the 

universal properties of chaotic systems point to practical suggestions for applying Chaos 

results to strategic thinking and decision making. The power of Chaos comes from this 

universality: not just the vast number of chaotic systems, but the common types of 

behaviors and transitions that appear in completely unrelated systems. As a result, recent 

recognition of Chaos in social systems offers new opportunities to apply these results to 

problems in decision making, strategic planning and policy formulation. 

The evidence is clear: chaotic dynamics pervade the dynamics of military affairs. 

The implications of Chaos Theory offer an extraordinary range of options unavailable 

only 20 years ago.   Not only do current military systems naturally exhibit chaotic 
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dynamics, but many systems are vulnerable to new strategies that exploit Chaos results. 

Because of the theory's tremendous potential, every military leader needs to be familiar 

with the fundamentals of Chaos in order to recognize Chaos when it occurs, expect 

chaotic dynamics in military systems, and exploit the vast array of tools for diagnosing 

and controlling those dynamics. 
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Appendix 

What does it mean to be Random? 

Our usual connotations of randomness carry images of erratic, completely 

unpredictable behavior. For a fair die on a craps table, randomness means that sooner 

or later, that die will roll to a 6. It means there is no chance ofthat die rolling a string of 

l's forever. If that were the case, the die would be very predictable, and thus, not 

random. 

To be more precise, I'll borrow an explanation by Robert Batterman in his article, 

"Defining Chaos."134 Let's start with an infinite string of perfectly alternating digits: 

0 10 10 10 1 .... 

How much information does it take to recognize, transmit or repeat this string? Suppose 

we only had access to a brief list of the first few elements of the sequence. Could we 

draw any conclusions about the system's behavior? 

0 nope 

01 nope 
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0 10 hmmm, we begin to see a pattern 

0 10 1 looks a little regular, but can't tell yet 

0 10 10 we can start to guess some regularity.... 

After 20, or 50, or 1000 new pieces of information (additional digits in the observed 

string) we think we have it: this string of data has period two; we only need three pieces 

of information to repeat the string: 

1. Print 0. 

2. Print 1. 

3. Repeat steps 1 and 2. 

Sure: lather, rinse, repeat. If we follow these steps, we're confident we can completely 

replicate the series. Now, if we don't know where or how the series was generated, we 

can not be positive of its perfect periodicity. Nonetheless, as we get more and more 

information, our confidence in our analysis improves. 

So how would we characterize a random string of data? In terms of our data 

string, it means we would need the ENTIRE infinite string—that is, an infinite list of 

instructions—in order to accurately reproduce the original infinite data set. This 

requirement for an unending set of instructions, to communicate or reproduce the data, is 

sometimes offered as a formal definition for randomness. 

161 



Endnotes 

'Michael F. Barnsley, Fractals Everywhere, 1st ed. (San Diego: Academic Press, 
1988), 1. 

2 James Gleick, Chaos: Making a New Science (New York: Viking Penguin, 1987), 304. 
3 Tagarev et al., "Chaos in War: Is It Present and What Does It Mean?" Report to Air 

Command and Staff College, Maxwell Air Force Base, Alabama, Academic Year 1994 
Research Program, June 1994, 52. 

4 Gleick, 69. 
5 Department of Defense Critical Technologies Plan, for the Committees on Armed 

Services, U.S. Congress, 1 May 1991 [DTIC AD-A234 900], p 1-3. 
6 David F. Andersen, "Foreword: Chaos in System Dynamics Models," System Dynamics 

Review 4 (1-2), 1988, 6-7. 
7 Gleick, 187. 
8 Gleick, 43. 
9 J.M.T. Thompson and H.B.Stewart, Nonlinear Dynamics and Chaos (New York: John 

Wiley & Sons, 1986), 291-310. 
10 Gleick, 42. 
11 "NOVA: The Strange New Science of Chaos," PBS television broadcast NOVA 

#1603,31 January 1989, produced by WGBH, Boston, Massachusetts. 
12 Gleick, 262-267. 
13 John Argyris, et al., An Exploration of Chaos, Texts on Computational Mechanics, 

Vol. VII (New York: North-Holland, 1994) ix. 
14 Gleick, 266. 
15 Argyris et al., 65. 
16 Gleick, 60-61. 
17 Heinz-Otto Peitgen et al., Chaos and Fractals: New Frontiers of Science (New York: 

Springer-Verlag, 1992), 697. 
18 Ibid., 698. 
19 Ibid., 514. 
20 Gleick, 24. 
21 Barnsley, Fractals Everywhere, 1st ed., 103. 
22 JA. Dewar et al., "Non-Monotonicity, Chaos, and Combat Models," RAND Library 

Collection (Santa Monica, California: RAND, 1991). 

162 



Barnsley, Fractals Everywhere 1st ed., 281. 
24 T. Matsumoto, Bifurcations: Sights, Sounds and Mathematics (New York: Springer- 

Verlag, 1993). 
25 Peitgen et al, 59. 
26 Gleick, 48. 
27 Gottfried Mayer-Kress, "Chaos and Crises in International Systems," Lecture at 

SHAPE Technology Symposium on Crisis Management, Mons, Belgium: 19-20 March 
1992. 

28 Paul E. Rapp, et al., "Dynamical Characterization of Brain Electrical Activity," in Saul 
Krasner ed., The Ubiquity of Chaos, (Washington, D.C.: American Association for the 
Advancement of Science (AAAS), 1990), 10. 

29 Peitgen et al., 526. 
30 Tagarev et al., 51-53. 
31 Campbell and Mayer-Kress, 84. 
32 Gleick, 119. 
33 Thompson, 291-310. 
34 Solomon C.S. Yim, "Chaotic and Random Responses of Ocean Structural Systems," 

Office of Naval Research Young Investigator Award, Research Project N00014-88-K- 
0729,1 March 1992 [DTIC AD-A247 561]. 

35 Zeki Okan Oral, "Hopf Bifurcations in Path Control of Marine Vehicles," Thesis, 
Naval Postgraduate School, Monterey, California: June 1993 [DTIC AD-A268 818]. 

36 Michael F. Barnsley and Lyman P. Hurd, Fractal Image Compression (Wellesley, 
Massachusetts: AK Peters, Ltd, 1993). 

37 Yuval Fisher et al., "Fractal Image Compression," Quarterly Progress Report 8-12-91 
(San Diego, California: NETROLOGIC, Inc., July 1991) [DTIC AD-A240 636]. 

38 B.H. Tongue and K. Gu, "A Higher Order Method of Interpolated Cell Mapping," 
Journal of Sound and Vibration 125 (169), 1988. 

39 Max-Olivier Hongler, Chaotic and Stochastic Behaviour in Automatic Production 
Lines (Berlin: Springer-Verlag, 1994). 

40 Department of Defense Critical Technologies Plan, May 1991. 
41 Kurt Wiesenfeld et al, "Observation of Antiphase States in a Multimode Laser," 

Physical Review Letters 65 (14), 1 October 1990,1749-1752. 
4 Tagarev et al., 32. 
43 Frank Heppner and Ulf Grenander, "A Stochastic Nonlinear Model for Coordinated 

Bird Flocks," in Saul Krasner, ed., The Ubiquity of Chaos (Washington, D.C.: 
American Association for the Advancement of Science (AAAS), 1990), 233-238. 

44 Grossman and Mayer-Kress, 701-704. 
45 Ibid. 
46 Wheatley, 7. 
47 Headquarters Department of the Army, Operations, FM100-5 (Washington, D.C.: 

14 June 1993), p. 2-6. 

163 



48 Department of the Navy, Warfighting, FMFM-1 (Washington, D.C.: 6 March 1989), 
66-67. 

49 Prof Michael I. Handel, "German Strategic Alternatives," Lecture at U.S. Naval War 
College, Newport, R.I.: 26 September 1994. 

50 Prof Edward Teller, comments at The Tenth Annual Space Symposium, Broadmoor 
Hotel, Colorado Springs, Colorado: February 1994. 

51 J.P. Crutchfield, "Knowledge and Meaning: Chaos and Complexity," in Lui Lam and 
Vladimir Naroditsky, eds., Modeling Complex Phenomena (New York: Springer- 
Verlag, 1992), 68. 

52 Andersen, 3-13. 
53 Interview with Dr Stephen O. Fought, National Security Decision Making Department, 

Naval War College, Newport, R.I.: 1 February 1995. 
54 Andreas S. Weigend and Neil A. Gerschenfeld, eds., Time Series Prediction: 

Forecasting the Future and Understanding the Past, Proceedings of the NATO 
Advanced Research Workshop on Comparative Time Series Analysis held in Santa Fe, 
New Mexico, May 14-17, 1992, Proceedings Vol. XV, Sante Fe Institute Studies in the 
Sciences of Complexity (Reading, Massachusetts: Addison-Wesley, 1994), 175-193. 

55 Weigend, 191. 
56 Ibid. 
57 M. Casdagli, "Nonlinear Forecasting, Chaos and Statistics," in Lui Lam and Vladimir 

Naroditsky, eds., Modeling Complex Phenomena (New York: Springer-Verlag, 1992), 
131-152. 

58 Edward Ott et al, eds., Coping with Chaos: Analysis of Chaotic Data and the 
Exploitation of Chaotic Systems (New York: John Wiley & Sons, 1994). 

59 J.D. Farmer and John J. Sidorowich, "Exploiting Chaos to Predict the Future and 
Reduce Noise," in Y.C. Lee, ed., Evolution, Learning and Cognition (Teaneck, New 
Jersey: World Scientific Publishing, 1988), 277-330. 

60 William W. Taylor, "Chaotic Evolution and Nonlinear Predicition in Signal Separation 
Applications," RAND Report P-7769 (Santa Monica, California: RAND, April 1994). 

61 Interview with Dr John Hanley, Program Director of U.S. Naval War College Strategic 
Studies Group, and CDR Bill Millward, USN, Naval War College, Newport, RI: 
16 December 1994. 

62 Thompson, xii. 
63 Major Patrick Kelly, 38. 
64 Edward Ott et al., "Controlling Chaos," Physical Review Letters 64 (11), 

12 March 1990,1196-1199. 
65 Ibid. 
66 Troy Shinbrot et al, "Using Small Perturbations to Control Chaos," Nature 363, 

3 June 1993,415. 
67 Ott et al., Coping with Chaos. 
68 Elizabeth Bradley, "Control Algorithms for Chaotic Systems," MIT Artificial 

Intelligence Laboratory, AI Memo No. 1278 (Cambridge, Massachusetts: MIT, 
March 1991) [DTIC AD-A260 067]. 

69 Shinbrot et al., 415. 

164 



70 W.L. Ditto et al., "Experimental Control of Chaos," Physical Review Letters 65 (26), 
24 December 1990, 3211-3214. 

71 Henry D.I. Abarbanel, "Nonlinearity and Chaos at Work," Nature 364, 
19 August 1993, 672-673. 

72 Martinus M. Sarigul-Klijn, "Application of Chaos Methods to Helicopter Vibration 
Reduction Using Harmonic Control" Ph.D. Dissertation, Naval Postgraduate School, 
Monterey, California, March 1990 [DTIC AD-A226 736]. 

73 Ed Paisley, "Out of Chaos, Profits," Far Eastern Economic Review, 7 October 1993, 
84. 

74 Raj Roy et al., "Dynamical Control of a Chaotic Laser: Experimental Stabilization of a 
Globally Coupled System," Physical Review Letters 68,2 March 1992,1259-1262. 

75 Jeffrey J. Leader, "Chaotic Keystream Generators for Additive Stream Ciphers," 
Technical ReportNPS-MA-93-015 (Monterey, California: Naval Postgraduate School, 
Jan 1993-Apnl 1993) [DTIC AD-A265 824]. 

76 Joseph Neff and Thomas L. Carroll, "Circuits That Get Chaos In Sync," Scientific 
American, August 1993, 120-122. 

77 Bradley, "Taming Chaotic Circuits." 
78 Ott et al., "Controlling Chaos." 
79 Lt Col (retired) Price T. Bingham, USAF, "The Air Force's New Doctrine," Military 

Review (Fort Leavenworth, KS: US Army Command and General Staff College, 
November 1992), 13-14. 

80 Gleick, 278. 
81 Thompson, xi. 
82 Wheatley, 126. 
83 Jim Yorke, "Calculated Trajectories in Chaotic Systems," Lecture at Georgia Institute 

of Technology, School of Mathematics, Atlanta, Georgia: Fall 1989. 
84 Argyris et al., 232. 
85 Ibid., 72. 
86 Ralph Abraham et al., "Computational Unfolding of Double-Cusp Models of Opinion 

Formation," Internationaljournal of Bifurcation and Chaos 1 (2), 1991, 417-430. 
87 Y.Y. Azmy and V. Protopopescu, "Two Dimensional Maps Generated by Competitive 

Systems," Oak Ridge National Laboratory (ORNL) TM-11026 (Oakridge, Tennessee: 
ORNL, February 1989). 

88 JA. Dewar et al., "Non-Monotonicity, Chaos, and Combat Models," RAND Library 
Collection (Santa Monica, California: RAND, 1991). 

89 Dewar, 42. 
90 John T. Dockery and A.E.R. Woodcock, The Military Landscape (Cambridge, 

England: Woodhead Publishing, 1993). 
91 Dockery and Woodcock, 138. 
92 Ibid., 137. 
93 Glenn E. James et al., "Elimination of Chaos in an Intracavity-Doubled Nd:YAG 

Laser," Optics Letters 15 (20), 15 October 1990, 1141-1143. 

165 



94 Alvin M. Saperstein, "Chaos and the Making of International Security Policy," in Saul 
Krasner, ed., The Ubiquity of Chaos (Washington, D.C.: American Association for the 
Advancement of Science (AAAS), 1990), 167-180. 

95 Maj David Nicholls, USAF, and Maj Todor D. Tagarev, Bulgarian Air Force, "What 
Does Chaos Theory Mean for Warfare?" Airpower Journal, Fall 1994,48-57. 

96Capt James R. Stright, USAF, "Embedded Chaotic Time Series: Applications in 
Prediction and Spatio-Temporal Classification," Ph.D. Dissertation, Air Force Institute 
of Technology, Wright-Patterson Air Force Base, Ohio, June 1994 
[DTIC AD-A280 690]. 

97 "Project 2025 Briefing for the Secretary of Defense and the Service Chiefs," Institute 
for National Strategic Studies, National Defense University, 1994. 

98 Saperstein, 167-180. 
99 Gleick, 108. 
100 Telephone conversations with Lt Col Gerald Diaz, USAF, Defense Airborne 

Reconnaissance Office, Washington D.C.: November 1994. 
101 Patrick Seitz, "C-Band Shortage Forces Scramble for Alternatives," Space News 5 

(43), 7-13 November 1994,1. 
102 Michael F. Barnsley, Fractals Everywhere, 2d ed. (Cambridge, Massachusetts: 

Academic Press Professional, 1993), 94-95. 
103 Telephone interview with Rick Darby, Iterated Systems, Inc., Norcross, Georgia: 

28 November 1994. 
104 Information based on published descriptions of off-the-shelf products available from 

Iterated Systems, Inc., 5550-A Peachtree Parkway, Suite 650, Norcross, GA 30092. 
105 Gleick, 262. 
106 Lt Col Theodore H. Mueller, USA, "Chaos Theory: The Mayaguez Crisis," U.S. Army 

War College, Military Studies Program, Carlisle Barracks, Pennsylvania, 
15 March 1990. 

107 Joshua M. Epstein, "On the Mathematical Biology of Arms Races, Wars, and 
Revolutions," in Lynn Nadel and Daniel L. Stein, eds., "1992 Lectures in Complex 
Systems," Lecture Vol V, Sante Fe Institute Studies in the Sciences of Complexity 
(Reading, Massachusetts: Addison-Wesley, 1993), 425-436. 

108 John D. Sterman, "Deterministic Chaos in Models of Human Behavior: 
Methodological Issues and Experimental Results," System Dynamics Review 4 (1-2), 
1988,148-178. 

109Gregoire Nicolis and Ilya Prigogine, Exploring Complexity (New York: W.H. 
Freeman and Company, 1989), 232. 

110 Abrahametal., 417-430. 
111 Robert Axelrod and D. Scott Bennett, "A Landscape Theory of Aggression," British 

Journal of Political Science, Part 2,23, April 1993,211-233. 
112 Diana Richards, "Is Strategic Decision Making Chaotic?" Behavior Science 35, 1990, 

219-232. 
113 Todor Tagarev, et al. 
114 Sterman, 148-178. 
115 Ibid., 155. 

166 



116 William J. Ray, "EEG and Chaos: Description of Underlying Dynamics and Its 
Relation to Dissociative States," Final Progress Report: NASA Grant #NAG-1-1441, 
February 1994 [NASA-CR-195171]. 

117 Hal Gregersen and Lee Sailer, "Chaos Theory and Its Implications for Social Science 
Research," Human Relations 46 (7), 1993, 777-802. 

Todor Tagarev et al.. 
119 Sterman, 172. 
120 Grossman and Mayer-Kress, 701-704. 
121 Dick Axelrod, "Getting Everyone Involved: How One Organization Involved Its 

Employees, Supervisors and Managers in Redisigning the Organization," The Journal 
of Applied Behavioral Science 28 (4), December 1992,499-509. 

122 Sterman, 148-178. 
123 David F. Andersen and Jeppe Sturis, "Chaotic Structures in Generic Management 

Models: Pedagogical Principles and Examples," System Dynamics Review 4 (1-2), 
1988,218-245. 

124 Nicholls and Tagarev. 
125 Robert Axelrod and Bennett. 
126 Col T. N. Dupuy, Numbers, Predictions & War: The Use of History to Evaluate and 

Predict the Outcome of Armed Conflict, 2d ed. (Fairfax, VA: HERO Books, 1985). 
127 Maj Sean B. MacFarland, USA, "Non-Linear Operations: A New Doctrine for a New 

Era," School of Advanced Military Studies, US Army Command and General Staff 
College, Fort Leavenworth, Kansas, Second Term Academic Year 1993-94, 
20 April 1994 [DTIC AD-A284 137], 15. 

128 Maj J. Marc LeGare, USA, "Paradigm Founds—The Nuclear and Nonlinear 
Battlefields," School of Advanced Military Studies, US Army Command and General 
Staff College, Fort Leavenworth, Kansas, First Term Academic Year 1992-93, 
February 1993 [DTIC AD-A264 451], 23. 

129 LTC Lester W. Grau, USA, "Soviet Non-Linear Combat: The Challenge of the 90s," 
Soviet Army Studies Office, US Army Combined Arms Center, Fort Leavenworth, 
Kansas, September 1990. 

130 Rear Admiral J.C. Wylie, USN, "Military Strategy: A General Theory of Power 
Control," in George Edward Thibault, ed., The Art and Practice of Military Strategy 
(New York: Rutgers, The State University, 1967), 200-201. 

131 Robert Sobel, For Want of a Nail: If Burgoyne Had Won at Saratoga (New York: 
MacMillan Co., 1973). 

132 Hugh R. Wilson, Jr., For Want of a Nail: The Failure of the League of Nations in 
Ethiopia (New York: Vantage Press, 1959). 

133 Hawthorne Daniel, For Want of a Nail: The Influence of Logistics on War (New York: 
McGraw-Hill, 1948). 

134 Robert W. Batterman, "Defining Chaos," Philosophy of Science 60 (1993) 56. 

167 



Bibliography 

Books, Edited Collections and Proceedings 

Argyris, John, Gunter Faust and Maria Haase. An Exploration of Chaos. Texts on 
Computational Mechanics, Vol. VII. New York: North-Holland, 1994. 

Barnsley, Michael F. Fractals Everywhere, lsted. San Diego: Academic Press, 1988. 

Barnsley, Michael F. Fractals Everywhere, 2d ed. Cambridge, Massachusetts: Academic 
Press Professional, 1993. 

Barnsley, Michael F. and Lyman P. Hurd. Fractal Image Compression. Wellesley, 
Massachusetts: AK Peters, Ltd, 1993. 

Casdagli, M. "Nonlinear Forecasting, Chaos and Statistics," in Lui Lam and Vladimir 
Naroditsky, eds., Modeling Complex Phenomena. New York: Springer-Verlag, 1992, 
131-152. 

Crutchfield, J.P. "Knowledge and Meaning: Chaos and Complexity," in Lui Lam and 
Vladimir Naroditsky, eds., Modeling Complex Phenomena. New York: Springer- 
Verlag, 1992), 66-101. 

Daniel, Hawthorne. For Want of a Nail: The Influence of Logistics on War. New York: 
McGraw-Hill, 1948. 

Dockery, John T. and A.E.R. Woodcock. The Military Landscape. Cambridge, England: 
Woodhead Publishing, 1993. 

Dupuy, Col T. N. Numbers, Predictions & War: The Use of History to Evaluate and 
Predict the Outcome of Armed Conflict, 2 ed. Fairfax, VA: HERO Books, 1985. 

Epstein, Joshua M. "On the Mathematical Biology of Arms Races, Wars, and 
Revolutions," in Lynn Nadel and Daniel L. Stein, eds., "1992 Lectures in Complex 
Systems." Lecture Vol V, Sante Fe Institute Studies in the Sciences of Complexity. 
Reading, Massachusetts: Addison-Wesley, 1993,425-436. 

Farmer, J.D., and John J. Sidorowich. "Exploiting Chaos to Predict the Future and 
Reduce Noise," in Y.C. Lee, ed., Evolution, Learning and Cognition. Teaneck, New 
Jersey: World Scientific Publishing, 1988, 277-330. 

Gleick, James. Chaos: Making a New Science. New York: Viking Penguin Inc, 1987. 

Heppner, Frank and Ulf Grenander. "A Stochastic Nonlinear Model for Coordinated Bird 
Flocks," in Saul Krasner, ed., The Ubiquity of Chaos. Washington, D.C.: American 
Association for the Advancement of Science (AAAS), 1990,233-238. 

168 



Hongler, Max-Olivier. Chaotic and Stochastic Behaviour in Automatic Production 
Lines. Berlin: Springer-Verlag, 1994. 

Katz, Richard A., ed. The Chaos Paradigm: Developments and Applications in 
Engineering and Science. American Institute of Physics (AIP) Conference Proceedings 
296, Mystic, CT, 1993. New York: AIP Press, 1994. 

Nicolis, Gregoire, and Ilya Prigogine. Exploring Complexity. New York: W.H. Freeman 
and Company, 1989. 

Mayer-Kress, G., ed. Dimensions and Entropies in Chaotic Systems: Quantification of 
Complex Behavior. Proceedings of an International Workshop at the Pecos Paver 
Ranch, New Mexico, September 11-16,1985. New York: Springer-Verlag, 1986. 

Matsumoto, T. Bifurcations: Sights, Sounds and Mathematics. New York: Springer- 
Verlag, 1993. 

Ott, Edward, Tim Sauer and James A. Yorke, eds. Coping with Chaos: Analysis of 
Chaotic Data and the Exploitation of Chaotic Systems. New York: John Wiley & Sons, 
1994. 

Peitgen, Heinz-Otto, Hartmut Jürgens and Dietmar Saupe. Chaos and Fractals: New 
Frontiers of Science. New York: Springer-Verlag, 1992. 

Rapp, Paul E., Theodore R. Bashore, Irwin D. Zimmerman, Jacques M. Martinerie, 
Alfonso M. Albano and Alistair I. Mees. "Dynamical Characterization of Brain 
Electrical Activity," in Saul Krasner, ed., The Ubiquity of Chaos. Washington, D.C.: 
American Association for the Advancement of Science (AAAS), 1990,10-22. 

Saperstein, Alvin M. "Chaos and the Making of International Security Policy," in Saul 
Krasner, ed., The Ubiquity of Chaos. Washington, D.C.: American Association for the 
Advancement of Science (AAAS), 1990, 167-180. 

Sauer, Tim. "Time Series Prediction by Using Delay Coordinate Embedding," in 
Andreas S. Weigend and Neil A. Gerschenfeld, eds., Time Series Prediction: 
Forecasting the Future and Understanding the Past. Proceedings of the NATO 
Advanced Research Workshop on Comparative Time Series Analysis held in Santa Fe, 
New Mexico, May 14-17, 1992, Proceedings Vol. XV, Sante Fe Institute Studies in the 
Sciences of Complexity. Reading, Massachusetts: Addison-Wesley, 1994. 

Sobel, Robert. For Want of a Nail...: If Burgoyne Had Won at Saratoga. New York: 
MacMillan Co., 1973. 

Taylor, William W. "Chaotic Evolution and Nonlinear Predicition in Signal Separation 
Applications." RAND Report P-7769. Santa Monica California: RAND, April 1994. 

Thompson, J.M.T. and H.B.Stewart. Nonlinear Dynamics and Chaos. New York: John 
Wiley & Sons, 1986. 

Weigend, Andreas S., and Neil A. Gerschenfeld, eds. Time Series Prediction: 
Forecasting the Future and Understanding the Past. Proceedings of the NATO 
Advanced Research Workshop on Comparative Time Series Analysis held in Santa Fe, 
New Mexico, May 14-17,1992. Proceedings Vol. XV, Sante Fe Institute Studies in the 
Sciences of Complexity. Reading, Massachusetts: Addison-Wesley, 1994. 

169 



Wheatley, Margaret. Leadership and the New Science. San Francisco: Berrett-Koehler 
Publishers, 1992. 

Wilson, Hugh R., Jr. For Want of a Nail: The Failure of the League of Nations in 
Ethiopia. New York: Vantage Press, 1959. 

Wylie, Rear Admiral J.C., USN. "Military Strategy: A General Theory of Power 
Control," in George Edward Thibault, ed., The Art and Practice of Military Strategy. 
New York: Rutgers, The State University, 1967,196-203. 

Periodicals 

Abarbanel, Henry D.I. "Nonlinearity and Chaos at Work." Nature 364, 19 Aug 1993, 
672-673. 

Abraham, Ralph, Alexander Keith, Matthew Koebbe and Gottfried Mayer-Kress. 
"Computational Unfolding of Double-Cusp Models of Opinion Formation." 
Internationaljournal of Bifurcation and Chaos 1 (2), 1991,417-430. 

Andersen, David F. "Foreword: Chaos in System Dynamics Models." System Dynamics 
Review 4 (1-2), 1988,3-13. 

Andersen, David F., and Jeppe Sturis. "Chaotic Structures in Generic Management 
Models: Pedagogical Principles and Examples." System Dynamics Review 4 (1-2), 
1988,218-245. 

Axelrod, Dick. "Getting Everyone Involved: How One Organization Involved Its 
Employees, Supervisors and Managers in Redisigning the Organization." The Journal 
of Applied Behavioral Science 28 (4), December 1992, 499-509. 

Axelrod, Robert and D. Scott Bennett. "A Landscape Theory of Aggression." British 
Journal of Political Science, Part 2,23, April 1993,211-233. 

Batterman, Robert W. "Defining Chaos." Philosophy of Science 60,1993,43-66. 

Bingham, Lt Col (retired) Price T., USAF. "The Air Force's New Doctrine." Military 
Review. Fort Leavenworth, KS: U.S. Army Command and General Staff College, 
November 1992, 13-19. 

Ditto, W.L., S.N. Rauseo and M.L. Spano. "Experimental Control of Chaos." Physical 
Review Letters 65 (26), 24 December 1990, 3211-3214. 

Gregersen, Hal, and Lee Sailer. "Chaos Theory and Its Implications for Social Science 
Research." Human Relations 46 (7), 1993, 777-802. 

Grossman, Siegfried and Gottfried Mayer-Kress. "Chaos in the International Arms Race." 
Nature 337,23 February 1989, 701-704. 

James, Glenn E., Evans M. Harrell II, Christopher Bracikowski, Kurt Wiesenfeld and 
Rajarshi Roy. "Elimination of Chaos in an Intracavity-Doubled Nd:YAG Laser." 
Optics Letters 15 (20), 15 October 1990,1141-1143. 

170 



Mann, Steven R. "Chaos Theory and Strategie Thought." Parameters: Journal of the 
U.S. Army War College, Autumn 1992, 54-68. 

Naval Research Reviews, Office of Naval Research (ONR), Vol XLV (3), 1993. Special 
issue devoted to Chaos applications. 

Neff, Joseph and Thomas L. Carroll. "Circuits That Get Chaos In Sync." Scientific 
American, August 1993,120-122. 

Nicholls, Maj David, USAF, and Maj Todor D. Tagarev, Bulgarian Air Force. "What 
Does Chaos Theory Mean for Warfare?" Airpower Journal, Fall 1994,48-57. 

Ott, Edward, Celso Grebogi and James A. Yorke. "Controlling Chaos." Physical Review 
Letters 64 (11), 12 March 1990,1196-1199. 

Paisley, Ed. "Out of Chaos, Profits." Far Eastern Economic Review, 
7 October 1993, 84. 

Petrov, Valery, Vilmos Gaspar, Jonathan Masere and Kenneth Showalter. "Controlling 
Chaos in the Belousov-Zhabotinsky Reaction." Nature 361, 21 January 1993, 240-243. 

Richards, Diana. "Is Strategic Decision Making Chaotic?" Behavior Science 35, 1990, 
219-232. 

Roy, Raj, T.W. Murphy, T.D. Maier, Z. Gills and E.R. Hunt. "Dynamical Control of a 
Chaotic Laser: Experimental Stabilization of a Globally Coupled System." Physical 
Review Letters 68, (1992), 1259-1262. 

Seitz, Patrick. "C-Band Shortage Forces Scramble for Alternatives." Space News 5 (43), 
7-13 November 1994, 1. 

Shinbrot, Troy, Celso Grebogi, Edward Ott and James A. Yorke. "Using Small 
Perturbations to Control Chaos." Nature 363, 3 June 1993,415. 

Sterman, John D. "Deterministic Chaos in Models of Human Behavior: Methodological 
Issues and Experimental Results." System Dynamics Review 4 (1-2), 1988, 148-178. 

Stringer, John. "Application of Chaos Theory to Corrosion Control." EPRI Journal 
(July/August 1993), 36-38. 

Wiesenfeld, Kurt, Christopher Bracikowski, Glenn James and Rajarshi Roy. 
"Observation of Antiphase States in a Multimode Laser." Physical Review Letters 65 
(14), 1 October 1990, 1749-1752. 

Reports and Documents 

Azmy, Y.Y. and V. Protopopescu. "Two Dimensional Maps Generated by Competitive 
Systems." Oak Ridge National Laboratory (ORNL) TM-11026. Oakridge, Tennessee: 
ORNL, February 1989. 

171 



Bradley, Elizabeth. "Control Algorithms for Chaotic Systems." MIT Artificial 
Intelligence Laboratory, AI Memo No. 1278. Cambridge, Massachusetts: MIT, 
March 1991 [DTIC AD-A260 067]. 

Bradley, Elizabeth. "Taming Chaotic Circuits." Massachusetts Institute of Technology 
(MIT) Artificial Intelligence Laboratory, AI-TR 1388. Cambridge, Massachusetts: 
MIT, September 1992 [DTIC AD-A259 495]. 

Campbell, David K. and Gottfried Mayer-Kress. "Nonlinearity and Chaos: The 
Challenges and Limitations of Mathematical Modeling of Environmental and Socio- 
political Issues," in Proceedings of the Conference on Technology-Based Confidence 
Building: Energy and Environment, Center for National Security Studies (CNSS) 
Papers, No. 22. Los Alamos National Laboratory, New Mexico, November 1989 
[LA-11728-C] 71-91. 

Department of Defense Critical Technologies Plan, for the Committees on Armed 
Services. U.S. Congress, 1 May 1991 [DTIC AD-A234 900]. 

Department of the Navy. Warfighting, FMFM-1. Washington, D.C., 6 March 1989. 

Dewar, J.A., J.J. Gillogly and MX. Juncosa. "Non-Monotonicity, Chaos, and Combat 
Models." RAND Library Collection. Santa Monica, CA : RAND, 1991. 

Fisher, Yuval, Ben Bielefeld, Albert Lawrence and Dan Greenwood. "Fractal Image 
Compression." Quarterly Progress Report 8-12-91. San Diego, California: 
NETROLOGIC, Inc., July 1991 [DTIC AD-A240 636]. 

Grau, LTC Lester W., USA. "Soviet Non-Linear Combat: The Challenge of the 90s." 
Soviet Army Studies Office, US Army Combined Arms Center, Fort Leavenworth, 
Kansas. September 1990. 

Headquarters Department of the Army.    Operations, FM100-5.    Washington, D.C., 
14 June 1993. 

Kelly III, Major Patrick, USA. "Modern Scientific Metaphors of Warfare: Updating the 
Doctrinal Paradigm." Monograph, School of Advanced Military Studies, U.S. Army 
Command and General Staff College, Fort Leavenworth, KS, Second Term Academic 
Year 92-93 [DTIC AD-A274 366]. 

Leader, Jeffery J. "Chaotic Keystream Generators for Additive Stream Ciphers." 
Technical Report NPS-MA-93-015. Monterey, California: Naval Postgraduate School, 
Jan 1993-Apnl 1993 [DTIC AD-A265 824]. 

LeGare, Maj J. Marc USA. "Paradigm Found—The Nuclear and Nonlinear Battlefields." 
School of Advanced Military Studies, US Army Command and General Staff College, 
Fort Leavenworth, Kansas, First Term Academic Year 1992-93. February 1993 
[DTIC AD-A264 451]. 

MacFarland, Maj Sean B., USA. "Non-Linear Operations: A New Doctrine for a New 
Era." School of Advanced Military Studies, US Army Command and General Staff 
College, Fort Leavenworth, Kansas, Second Term Academic Year 1993-94. 20 Apr 94 
[DTIC AD-A284 137]. 

Mueller, Lt Col Theodore FL, USA "Chaos Theory: The Mayaguez Crisis." U.S. Army 
War    College,    Military    Studies    Program,    Carlisle    Barracks,    Pennsylvania. 
15 March 1990. 

172 



Oral, Zeki Okan. "Hopf Bifurcations in Path Control of Marine Vehicles." Thesis, Naval 
Postgraduate School, Monterey, California: June 1993 [DTIC AD-A268 818]. 

"Project 2025 Briefing for the Secretary of Defense and the Service Chiefs." Institute for 
National Strategic Studies, National Defense University, Washington, D.C.,1994. 

Ray, William J. "EEG and Chaos: Description of Underlying Dynamics and Its Relation 
to Dissociative States." Final Progress Report: NASA Grant #NAG-1-1441, February, 
1994 [NASA-CR-195171]. 

Sarigul-Klijn, Martinus M. "Application of Chaos Methods to Helicopter Vibration 
Reduction Using Higher Harmonic Control." Ph.D. dissertation, Naval Postgraduate 
School, Monterey, California: March 1990 [DTIC AD-A226 736]. 

Stright, Capt James R, USAF. "Embedded Chaotic Time Series: Applications in 
Prediction and Spatio-Temporal Classification." Ph.D. dissertation, Air Force Institute 
of Technology, Wright-Patterson Air Force Base, Ohio: June 1994 
[DTIC AD-A280 690]. 

Tagarev, Todor, Michael Dolgov, David Nicholls, Randal C. Franklin and Peter Axup. 
"Chaos in War: Is It Present and What Does It Mean?" Report to Air Command and 
Staff College, Maxwell Air Force Base, Alabama, Academic Year 1994 Research 
Program. June 1994. 

Yim, Solomon C.S. "Chaotic and Random Responses of Ocean Structural Systems." 
Office of Naval Research Young Investigator Award, Research Project 
N00014-88-K-0729: 1 March 1992 [DTIC AD-A247 561]. 

Lectures, Interviews and Other Sources 

Handel, Prof Michael I. "German Strategic Alternatives." Lecture at U.S. Naval War 
College, Newport, R.I.: 26 September 1994. 

Interview with Dr John Hanley, Program Director of U.S. Naval War College Strategic 
Studies Group, and CDR Bill Millward, USN, Naval War College, Newport, RI. 
16 December 1994. 

Interview with Dr Stephen O. Fought, National Security Decision Making Department, 
Naval War College, Newport, R.I.: 1 February 1995. 

Mayer-Kress, Gottfried. "Chaos and Crises in International Systems." Lecture at SHAPE 
Technology Symposium on Crisis Management, Mons, Belgium: 19-20 March 1992. 

"NOVA: The Strange New Science of Chaos." PBS television broadcast NOVA #1603, 
31 January 1989, produced by WGBH, Boston, Massachusetts. 

Published descriptions of off-the-shelf products available from Iterated Systems, Inc., 
5550-A Peachtree Parkway, Suite 650, Norcross, GA 30092. 

Telephone conversations with Lt Col Gerald Diaz, USAF, Defense Airborne 
Reconnaissance Office, Washington D.C. November 1994. 

173 



Telephone conversations with Maj Bruce M. Deblois, School of Advanced Air Power 
Studies, Maxwell Air Force Base, Alabama. September 1994. 

Telephone interview with Rick Darby, Iterated Systems, Inc., Norcross,  Georgia. 
28 November 1994. 

Teller, Prof Edward. Comments at The Tenth Annual Space Symposium, Broadmoor 
Hotel, Colorado Springs, Colorado: February 1994. 

Yorke, Jim.  "Calculated Trajectories in Chaotic Systems." Lecture at Georgia Institute 
of Technology, School of Mathematics, Atlanta, Georgia: Fall 1989. 

174 


